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Smoothly varying and multiplicative intensity variations within MR images that are artifactual, can reduce
the accuracy of automated brain segmentation. Fortunately, these can be corrected. Among existing
correction approaches, the nonparametric non-uniformity intensity normalization method N3 (Sled, J.G.,
Zijdenbos, A.P., Evans, A.C., 1998. Nonparametric method for automatic correction of intensity nonuniformity
in MRI data. IEEE Trans. Med. Imag. 17, 87–97.) is one of the most frequently used. However, at least one
recent study (Boyes, R.G., Gunter, J.L., Frost, C., Janke, A.L., Yeatman, T., Hill, D.L.G., Bernstein, M.A., Thompson,
P.M., Weiner, M.W., Schuff, N., Alexander, G.E., Killiany, R.J., DeCarli, C., Jack, C.R., Fox, N.C., 2008. Intensity
non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. NeuroImage 39,
1752–1762.) suggests that its performance on 3 T scanners with multichannel phased-array receiver coils can
be improved by optimizing a parameter that controls the smoothness of the estimated bias field. The present
study not only confirms this finding, but additionally demonstrates the benefit of reducing the relevant
parameter values to 30–50 mm (default value is 200 mm), on white matter surface estimation as well as the
measurement of cortical and subcortical structures using FreeSurfer (Martinos Imaging Centre, Boston, MA).
This finding can help enhance precision in studies where estimation of cerebral cortex thickness is critical for
making inferences.
© 2009 Elsevier Inc. All rights reserved.
Introduction
Intensity non-uniformity artifact in images obtained fromhighfield
MR systems refers to the presence of smoothly varying and multi-
plicative intensity variations within the tissues, also referred to as bias
field. The presence of this artifact may adversely affect qualitative and
quantitative image analysis. Common causes include static field
inhomogeneity B0, eddy currents driven by the switching of field
gradients, non-uniform sensitivity in the surface coil and specific
permeability anddielectric properties of the imaged object (Vovk et al.,
2007). The latter effect is particularly prominent at higher magnetic
fields (Belaroussi et al., 2006), and is often observed in the form of
“central brightening artifact” in head imaging. Despite measures to
prospectively correct such artifacts using phantom or shimming
techniques, and/or in hardware, using a multichannel phased-array
receiver coil (Bernstein et al., 2006), additional retrospective correc-
tion is often necessary. Detailed reviews of recent developments in
retrospective non-uniformity correction can be found in (Belaroussi
et al., 2006; Hou, 2006; Styner and Leemput, 2005; Vovk et al., 2007).

Among existing approaches, the nonparametric non-uniformity
intensity normalization method N3 (Sled et al., 1998) is one of the
l rights reserved.
most frequently used. This approach iterates between three main
steps, histogram sharpening, bias field estimation (based on the
obtained sharpened histogram) and B-spline smoothing. High
performance and robustness (Arnold et al., 2001) have practically
turned N3 into an industry standard (Arnold et al., 2001; Gispert et al.,
2004; Hou et al., 2006; Likar et al., 2001; Luo et al., 2005; Shattuck
et al., 2001; Sled et al., 1997; Vovk et al., 2006). For example, it has
been incorporated into FreeSurfer,1 a widely used tool for estimating
cortical thickness.

N3 contains several adjustable parameters, such as smoothing
distance (the distance between B-spline nodes), deconvolution
kernel size, stopping criteria for iterations, maximum number of
iterations and image down-sampling ratio (Sled et al., 1998).
However, in most publications (Arnold et al., 2001; Gispert et al.,
2004; Hou et al., 2006; Likar et al., 2001; Luo et al., 2005; Shattuck et
al., 2001; Vovk et al., 2006) default values reported in the original
publication (Sled et al., 1998) were used. We contend that these
parameters, intended for use on images acquired on 1.5 T scanners
built over a decade ago need to be revised for data acquired on
modern higher field research magnets.

Modern research MR scanners typically have a field strength of 3 T
or higher and employ multichannel phased array coils. The images
1 http://surfer.nmr.mgh.harvard.edu/.
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Table 1
Acquisition scheme of test–retest data; A1 and A2 represent the data obtained from
two scans on Siemens Allegra 3 T scanner, T1 and T2— on Siemens Tim Trio 3 T scanner.

Scan/Subject Subj1 Subj2 Subj3 Subj4 Subj5 Subj6 Subj7 Subj8

A1 × × × × × × × ×
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they generate are associated with somewhat different non-uniformity
profiles. For example, “center brightening artifact” is more prominent
at 3 T (∼30%) than at 1.5 T (∼5%) (Bernstein et al., 2006). As such,
default N3 parameters developed for legacy systems may not be
appropriate for modern scanners. A recent study (Boyes et al., 2008)
has suggested that reducing one of the N3's parameters, the
smoothing distance, from the default 200 mm to 50–100 mm can
lead to substantial improvement in the correction performance.

The current study had two goals. First, we wanted to replicate
Boyes et al's findings regarding the effect of smoothing distance on the
quality of intensity correction. Secondly, we wanted to determine the
effect that changing smoothing distance has at different points along
FreeSurfer segmentation pipeline, see (Dale et al., 1999; Fischl et al.,
2002, 2004b, 1999) for detailed descriptions. This decision was
motivated by a wide use of this software; as of March 2009 there
were 58 published papers using FreeSurfer in various neurological
studies.2

Critically, our goal of optimizing intensity correction on the basis of
segmentation performancemay not necessarily result in more reliable
bias field estimates. In particular, by making the tissue intensity more
uniform in the effort to improve segmentation, interesting differences
in WM intensity caused by biological factors may be inadvertently
altered (van Walderveen et al., 2003).

Our findings suggest that using N3 with smaller smoothing
distances engenders better intensity non-uniformity correction,
which, at least in the context of FreeSurfer segmentation pipeline,
translates into more accurate segmentation of white matter (WM)
surface and improved reliability of within and between scanner
measurements of cerebral cortex thickness and the volume of
selective subcortical structures.

Materials and methods

Subjects and data acquisition

MRI was performed on 3 T Siemens Allegra and Tim Trio (Siemens,
Erlangen, Germany) systems using a standardized imaging procedure
that incorporated a number of quality control measures. The T1-
weightedMP-RAGE sequence usedwasmodeled after that used by the
Alzheimer's Disease Neuroimaging Initiative (ADNI) consortium
(TR=2300 ms (Allegra), 2530 (Trio); TE=2.91 ms (Allegra); 1.64,
3.5, 5.36 and 7.22 ms (Trio, multi-echo acquisition); TI=900 ms
(Allegra), 1200 ms (Trio); flip angle=9° (Allegra), 7° (Trio);
Bandwidth 240 Hz/pixel (Allegra), 651 Hz/pixel (Trio); FOV
256×240 mm, 256×256 matrix; resulting voxel dimensions:
1.0×1.0×1.1 mm3 (Allegra), 1.0×1.0×1.0 mm3 (Trio). Acquisition
time was 9 min 14 s (Allegra); 6:03 (Trio). Prescan normalization was
used on both scanners. Parallel acquisition with a 4 channel phase
array coil was not accelerated on the Allegra, whereas GRAPPAwith an
acceleration factor of 2 was used on the 12 channel phase array coil of
the Tim Trio scanner. Both coils were stock Siemens coils without user
modification.

Data Set 1: 15 healthy subjects (age 56–71, 9 males), each scanned
once on a Siemens Allegra 3 T scanner.

Data Set 2: 15 healthy subjects (age 56–71, 4 males), each scanned
once on a Siemens Allegra 3 T scanner. The main difference between
this data set and data set 1 was the image quality. Data set 1 required
little or no editing, while the current data set gave rise to occasional
pial surface overgrowth due to inclusion of durawithin the brainmask
and an underestimation of WM surface, and consequently necessi-
tated substantial manual editing.

Data Set 3: 24 healthy subjects (age 54–68, 8 males), each scanned
once on a Siemens Tim Trio 3 T scanner.
2 http://surfer.nmr.mgh.harvard.edu/fswiki.
Data Set 4: 8 healthy subjects (4 young subjects, age 21–26, 3
males, and 4 elderly, age 62–73, 3 males), scanned within a short
time interval on Siemens Allegra 3 T and Siemens Tim Trio 3 T
scanners. The four young subjects were also scanned twice on each
scanner (Table 1). Biological change in the serial scans was assumed to
be negligible.

Data processing

Data sets 1–3 were first processed by FreeSurfer (FS) segmentation
pipeline (version 3.0.4) using default parameters and the resultant
GM/WM output, edited by an expert, was used as ground truth. The
editing affected only those areas which were classified as wrongly
segmented by an expert and was done on original images that were
not intensity corrected. After editing, FreeSurfer pipeline was rerun to
propagate the changes. For example, in the case of WM under-
estimation, only the WM surface was edited while the corresponding
change in the position of the pial surface was derived after rerunning
the pipeline.

All data sets were then processed using FreeSurfer several times,
once for each smoothing distance tested. Similar to (Boyes et al.,
2008), we increased the maximum number of iterations from default
50 to 1000 in order to cope with the smaller smoothing distances,
which lead to longer convergence times and thus require more
iterations. Parameter modifications were achieved by supplying
two additional arguments to ‘mri_nu_correct.mni’ function, namely
‘–distance’ and ‘–proto-iters’, which control smoothing distance and
maximum number of iterations respectively. All other parameters
were kept at default values.

Performance evaluation measures

Non-uniformity correction measure
As a measure of non-uniformity correction performance we used a

commonly accepted coefficient of variation of the white matter CVWM

(Vovk et al., 2007), defined as the ratio of the standard deviation σWM

and the mean μWM of intensities within WM region:

CVWM =
σWM

μWM
: ð1Þ

The underlying assumption of CVWM is that increasing intensity
non-uniformity leads to monotonic increase in standard deviation of
image intensity within WM. Hence a larger reduction in CV would
correspond to better non-uniformity correction. Partial volume voxels
may cause an increase in σWM not originating from intensity non-
uniformity. To avoid this undesirable effect, we excluded the outer
layer of voxels from the ground truth of WMmask (Boyes et al., 2008;
Sled et al., 1998).

Surface distance measure (segmentation performance)
FreeSurfer segmentation results in the generation of WM/GM and

GM/CSF surface meshes, suggesting a performance measure based on
surface-to-surface geometric distance, such as Hausdorff distance
A2 × × × ×
T1 × × × ×
T2 × × × × × × × ×
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(Huttenlocher et al., 1993). Given two finite point sets A={a1,….ap}
and B={b1,….bq}, the Hausdorff distance is defined as

H A;Bð Þ = max h A;Bð Þ; h B;Að Þð Þ ð2Þ

where

h A;Bð Þ = max
aaA

min
baB

‖a − b‖ ð3Þ

and ‖ � ‖ designates arbitrary norm (e.g. L∞ or Euclidean norm).
However, mesh representation poses several difficulties to the

interpretation of distance results. First, FreeSurfer's surface meshes
are arbitrarily initiated, leading to a possible misalignment between
meshes evenwhen the surfaces are identical; this invariably results in
non-zero Hausdorff distance (Fig. 1, top). This residual distance can
equal half the sampling distance in the worst cases, becoming quite
substantial in some sparse mesh locations. For example, FreeSurfer's
sampling distance can be as large as 3 mm, which may produce an
overestimation of up to 1.5 mm in the distance between surfaces.
Another limitation of Hausdorff distance is its inability to distinguish
between underestimation and overestimation.

To overcome these problems we modified the definition (2) in the
following manner. Given two finite vertex sets, A={a1,….ap} from the
ground truth surface and B={b1,….bq} from a test surface, and sets of
Fig. 1. Due to finite sampling rate, Hausdorff distance overestimates the distance
between surfaces (top). Evaluation of surface underestimation Hu and overestimation
Ho distances (bottom).
surface triangles SA={s1,….sr} and SB={s1,….st} formed by neighbor-
ing elements of A and B, the surface underestimation measure is
defined as:

Hu = max d− A;Bð Þ; dþ B;Að Þ� � ð4Þ

and surface overestimation measure is defined as:

Ho = max dþ A;Bð Þ;d− B;Að Þ� � ð5Þ

where

dþ A;Bð Þ = max
aaA

min
sbaSB ; sign jja− sb jjð Þ= +1

jja − sbjj;0
� �

d− A;Bð Þ = max
aaA

min
sbaSB ; sign jja− sb jjð Þ= −1

jja − sbjj;0
� �

Here ‖x − s‖ designates the distance between point x and the plane
formed by the triangular patch s; sign ‖ x − s ‖ð Þ is equal to +1 if the
angle between the projection vector from x onto the plane and the
surface normal vector is less than 90°, where surface normal is defined
as facing outside the surface. Fig. 1 (bottom) illustrates the newly
introduced underestimation and overestimation surface measures.

Within scanner and between scanner reliability (segmentation
performance)

Within and between scanner reliability was adopted as a second
measure of segmentation performance, based on measurements of
cerebral cortex thickness and volumes of subcortical structures.
Improving this reliability is essential for the detection of subtle
brain structure changes over time. Among a variety of reliability
measures used in structural MRI studies (Desikan et al., 2006; Feczko
et al., 2009; Fischl and Dale, 2000; Fischl et al., 2002; Han et al., 2006;
Scott and Thacker, 2005; Smith et al., 2002; van der Kouwe et al.,
2008), we chose intraclass correlation (ICC), absolute thickness
difference of cortical measurements and percentage volume change
(PVC) of subcortical structures.

The ICC (McGraw and Wong, 1996; Shrout and Fleiss, 1979; Weir,
2005) is one of the most commonly used metrics in structural MRI
(Desikan et al., 2006; Feczko et al., 2009). We have chosen ICC (2,1) in
the nomenclature of Shrout and Fleiss (1979) due to its desirable
sensitivity to systemic error. The ICC (2,1) is defined as an estimate of
the ratio between the subject variance and the total variance,
composed of between subject variance and variances of all other
random factors (Shrout and Fleiss, 1979). In the case of within scanner
(or test–retest Friedman et al., 2008) reliability ICC (2,1), these
random factors include subjects, repeat scans and interaction between
the scans and the subjects:

ρwithin scanner =
σ2

subj

σ2
subj + σ2

w + σ2
Iw + σ2

e
ð6Þ

where σ 2
subj is between subject variance, σ 2

w is between scan
variance, σ 2

Iw is the scan-subject interaction and σ 2
e is the variance

of noise.
In case of between scanner reliability ICC (2,1), the random factors

include subjects, scanners and interaction between the scanners and
the subjects:

ρbetween scanner =
σ2

subj

σ2
subj + σ2

b + σ2
Ib + σ2

e
ð7Þ

where σ 2
subj and σ 2

e are the same as in Eq. (6), σ 2
b is between scanner

variance, σ 2
Ib is the scanner–subject interaction. The variance

components in the above definitions were estimated through a



Table 2
Mean CVWM for various N3 smoothing distances and three tested data sets.

Distance
(mm)

Data Set 1 Data Set 2 Data Set 3
mean (std) mean (std) mean (std)

30 0.044 (0.005) 0.043 (0.007) 0.041 (0.005)
40 0.045 (0.005) 0.044 (0.008) 0.043 (0.004)
50 0.046 (0.005) 0.045 (0.007) 0.045 (0.005)
60 0.049 (0.007) 0.047 (0.008) 0.045 (0.005)
70 0.050 (0.007) 0.048 (0.009) 0.054 (0.006)
80 0.052 (0.008) 0.050 (0.009) 0.059 (0.007)
90 0.053 (0.009) 0.050 (0.008) 0.060 (0.007)
100 0.055 (0.010) 0.051 (0.009) 0.051 (0.008)
110 0.057 (0.011) 0.052 (0.009) 0.053 (0.008)
120 0.057 (0.011) 0.053 (0.009) 0.056 (0.009)
140 0.056 (0.010) 0.052 (0.009) 0.058 (0.009)
150 0.057 (0.011) 0.052 (0.009) 0.059 (0.009)
160 0.057 (0.011) 0.053 (0.009) 0.060 (0.010)
170 0.058 (0.011) 0.053 (0.009) 0.061 (0.010)
180 0.058 (0.011) 0.054 (0.009) 0.062 (0.010)
190 0.058 (0.010) 0.054 (0.010) 0.063 (0.010)
200 0.058 (0.011) 0.054 (0.010) 0.067 (0.009)

Bold values highlight the best achieved values of CVWM.
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two-way model ANOVA, see McGraw and Wong (1996), Shrout and
Fleiss (1979) and Weir (2005) for more details.

The absolute thickness difference of a cortical region is defined as
the absolute value of the difference between two measurements of its
thickness (Han et al., 2006). The percentage of volume change (PVC)
of a subcortical structure (Fischl et al., 2002) is a normalized version of
its absolute volume difference and is defined as:

PVC =
2 jV1 − V2 j
V1 + V2

: ð8Þ

Results

Reduced smoothing distances better suited for data from
contemporary scanners

In this experiment we evaluated CVWM for various N3 smoothing
distance values, ranging in 10mm increments from 30 to 200mm. The
results (Table 2) showed good agreement with (Boyes et al., 2008) on
all three data sets (spanning two scanners), confirming that smaller
N3 smoothing distance results in better non-uniformity correction.
However, the best smoothing distance was revealed to be 30 mm
rather than 50 mm, slightly lower than previously found (Boyes et al.,
2008). This is possibly due to the more limited testing range (50–
200 mm) used previously. Note that reduction in CVWM at smaller
smoothing distance does not imply overfitting to image structures. As
shown in Fig. 2 on example of one of the subjects from data set 3,
smoothing distance of 30 mm produces distinctly sharper estimate of
bias field but the one that does not resemble the anatomy of the brain.
Fig. 2. The shape of estimated bias field for two values of N3 s
The advantage of using N3 with a smaller smoothing distance of
30 mm compared to the default setting of 200 mm is illustrated in
Fig. 3. Assuming that the signal in parietal and temporal white
matter should be identical, the use of the smaller smoothing distance
narrowed the difference in signal intensitywithin these two regions by
21 points from 28 to 7, whereas the default smoothing distance
achieved only a 12 point reduction.

Testing segmentation performance using a surface distance measure

To test whether improvements in intensity non-uniformity correc-
tion (Table 2)would result in better segmentationperformancewe ran
FreeSurfer pipeline on data set 2with fiveN3 smoothing distances (30,
50, 100, 150 and 200 mm) and compared the estimated WM surfaces
with the ground truth. For more detailed analysis, surface distance
measures were applied individually to 34 anatomical regions parcel-
lated and labeled by FreeSurfer (Desikan et al., 2006; Fischl et al.,
2004a). This resulted in two sets of 34(regions)×30(hemispheres)
measurements for each smoothing distance used, one for assessing
underestimation and the other for evaluating overestimation.

The results of underestimation measure Hu at the default
smoothing distance of 200 mm are shown in Fig. 4. About 80% of
underestimation measures were below 1.5 mm and were likely to
result from measurement error rather than from segmentation (see
earlier discussion of the surface distance measure limitations). The
largest 20% of the underestimatedmeasurements cannot be explained
by measurement error and primarily originate from eight regions
highlighted in Fig. 4.

For further analysis we divided the set of 34(regions)×30(hemi-
spheres) into two groups. The first group contained data from the
eight problematic regions where underestimation exceeded 1.5 mm.
The rest of the data involved regions where underestimation was less
than 1.5 mm. We hypothesized that smaller smoothing distances
would reduce the underestimation in some of the regions in the first
group and would have no effect on the second group.

Fig. 5 shows how underestimation was affected by smoothing
distance. Using a smoothing distance of 30 mm reduced the average
underestimation in the first group from 3.7 mm to 2.5 mm. The per-
region reduction in underestimation ranged from 0.2 mm (middle
temporal) to 1.87 mm (temporal pole). In four regions (entorhinal,
fusiform, inferior temporal, and temporal pole) the reduction was
statistically significant (pb0.05) with both 30 mm and 50 mm
smoothing distances. Note that significance was estimated using a
paired t-test and resulting p-values were Bonferroni corrected for
multiple comparisons. Another three regions (lateral occipital, lateral
orbito frontal, and superior temporal) showed large but not significant
reductions in underestimation, e.g. 1.68 mm in lateral occipital region.
The failure for these effects to reach statistical significance can be
attributed to small sample size (only 7 hemispheres for lateral occipital
region). In the last region (middle temporal) the underestimation
moothing distance, 30 mm (middle) and 200 mm (right).



Fig. 3. Original image (left), image corrected using N3 with smoothing distance d=200 mm (middle) and d=30 mm (right). Average intensity values of selected ROIs are indicated
below. White matter intensities were normalized between three images using the left ROI.

Fig. 4. Regional underestimation distances obtained with default N3 smoothing distance of 200 mm: histogram of all distances (top) and average distance per region (middle);
highlighted bars represent values larger than 1.5 mm. Histogram of underestimation distances at 30 mm smoothing distance (bottom).
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Fig. 5. Underestimation measures under varying N3 smoothing distances for eight selected regions and the average for the rest of the regions. ⁎pb0.05 (Bonferroni corrected for
multiple comparisons).
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reduction was only 0.2 mm, suggesting that the underestimation
problem was caused by factors other than intensity non-uniformity.
Fig. 6 illustrates the extent to which reduction in underestimation
could be achieved. Residual intensity inhomogeneity within the
temporal lobe when using the default distance of 200 mm resulted
in significant underestimation of the WM and pial surfaces (Fig. 6).
Changing the smoothing distance to 30 mm led to better non-
uniformity correction and improved segmentation. Improvement can
also be observed in a tighter clustering of the underestimation
measures' histogram at 30 mm (Fig. 4).

In the second group a small, non-significant increase in the average
underestimation, from 0.78mm at 200mm to 0.89mm at 30mm, was
observed (Fig. 5). This increase, however, was no longer present at the
50 mm smoothing distance. Regarding the overestimation measure-
ments, none of the 34 regions displayed statistically significant
change. This was expected as overestimation of the pial surface is
Fig. 6. Effect of intensity inhomogeneity correction on FreeSurfer segmentation performan
corrected with N3 smoothing distance d=200 mm (top left); segmented surfaces with N3
primarily caused by inadequate skull stripping rather than intensity
non-uniformity.

Reliability of segmentation performance

To test the effect of N3 on segmentation reliability we processed
data set 4 in FreeSurfer pipeline, recording corresponding regional
cortex thicknesses and volumes of subcortical structures. Five
smoothing distances (30 mm, 50 mm, 100 mm, 150 mm and
200 mm) were tested, obtaining 5 sets of measurements, each
containing 34(regions)×24(hemispheres) (16 from the first scan +8
from the repeated scan, see Table 1) of cortex thicknessmeasurements
and 37(volumes)×24(hemispheres) of subcortical structure volume
measurements (Fischl et al., 2002) from each scanner. It was
hypothesized that smaller smoothing distances would produce better
segmentation reliability in cortex thickness measurement. We did not
ce: segmented white matter surface (green) and pial surface (red) overlaid on image
smoothing distance d=30 mm (top right); enlargements of relevant areas (bottom).



Fig. 8. Scatter plots of regional cortex thicknesses measured within Allegra scanner (AA_⁎), within Tim Trio scanner (TT_⁎) and between the two scanners (AT_⁎) with smoothing
distances 30 mm and 200 mm; E represents the mean absolute thickness difference.

Fig. 7. Mean and median ICCs of cortex thickness measurements; AA: within Allegra scanner, TT: within Tim Trio scanner; AT: between Allegra and Trio scanners.
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Fig. 9. Average ICCs of the volumes of subcortical structures, AA: within Allegra scanner;
TT: within Tim Trio scanner; AT: between two scanners.
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expect a change in reliability of subcortical structure measurement, as
smooth intensity variations caused by non-uniformity can be
neglected for structures with a small spatial extent.

The mean and median ICCs of cortex thickness measurements
within and between two 3 T scanners (Siemens Allegra and Tim Trio)
are shown in Fig. 7. We observed an increase in ICC for all
measurements when using smaller smoothing distances of 30–
50 mm. As the mean ICC values were affected by outliers, we
computed median values that probably better reflect the actual
performance. The largest improvement was observed in Allegra data
Fig. 10. Mean percentage of volume change for selected subcortical structures; AA: within
scanners.
where the median ICC was raised from 0.49 to 0.74. The change in ICC
was smaller for within Tim Trio and between scanner measurements.

When reliability was visualized using Bland–Altman scatter plots
(Fig. 8), the greatest benefit again arose from Allegra data. The
dispersion of measurements was reduced and the slope was closer to
zero using the 30 mm smoothing distance. For the Tim Trio data, there
was no difference in cluster scatter, but an improvement in slope was
observed. Finally, the between scanner measurements revealed no
change in slope but a more compact clustering at 30 mm.

These changes in estimation of cortical thickness resulted in a
reduction of the mean absolute thickness difference measure that was
largest for Allegra data (from 0.104 mm to 0.067 mm), and smaller for
between scanner (from 0.156 mm to 0.135 mm) and within Tim Trio
measurements (from 0.070 mm to 0.060 mm).

The reliability of volume measurement within 14 subcortical
structures (7 from each hemisphere) is shown in Fig. 9 (ICC) and
Fig. 10 (PVC). These are the same structures that were estimated in
prior publications (Fischl et al., 2002, 2004b; Han and Fischl, 2007);
see the full list in Fig. 10. Smoothing distance had a small effect on
average ICC, there being a modest improvement for the Tim Trio
and between scanner measurements.

This increase was primarily due to an improved reliability in
pallidum segmentation; its PVC was significantly reduced from 2.5–
3.5% to 1–1.5% (Fig. 10). This could be explained by the fact that the
pallidum is the largest subcortical structure and correspondingly, the
most sensitive to intensity non-uniformity.
Allegra scanner, TT: within Tim Trio scanner, and AT: between Allegra and Tim Trio



Fig. 11. Left — original image. Top row — images after N3-like correction with Gaussian smoothing. Bottom row — estimated bias fields. As FWHM of the Gaussian smoothing kernel gets smaller, the bias field overfits to image structures and
reduces WM/GM contrast.
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Discussion

Our experimental results provide substantial support for using
smaller smoothing distances (30–50 mm rather than default value of
200 mm) with the widely used N3 non-uniformity correction. This
seemingly trivial adjustment results in reduction in inhomogeneity of
WM intensity that in turn improves the estimation of WM/GM
surfaces, leading to improved reliability of cortical (and even some
subcortical) segmentation.

Note that the lower bound on smoothing distance (30 mm) was
chosen due to limitations of the current implementation of N3
algorithm, causing it to fail when the distance is set too low. N3's
approach to smoothing is based on B-spline fitting, where the spline
coefficients are obtained by solving a system of linear equations. The
number of elements in the equation matrix grows inversely propor-
tional to the sixth degree of the smoothing distance. Reducing the
smoothing distance beyond a certain point under 30 mm generates an
enormous matrix, which causes a memory error.

Additionally, smoothing distances below 30 mm are unlikely to be
beneficial. To confirm this, we used our own implementation of N3
algorithm, substituting spline-based smoothing with a more conven-
tional Gaussian smoothing. When the full width half maximum
(FWHM) of the Gaussian kernel was reduced to below 30 mm, non-
uniformity correction resulted in progressive overfitting to image
structures, reducing contrast between WM and GM (Fig. 11).

Of 118 locations where WM was underestimated, complete
resolution of the underestimation problem — to below 1.5 mm, was
realized in 15 locations. The other locations displayed a partial
resolution where underestimation distance was reduced, but was
above 1.5 mm. This indicates that intensity non-uniformity is not the
only factor causing WM underestimation. Other factors may include
noise, poor subject-dependent WM/GM contrast (Fischl and Dale,
2000; Han et al., 2006) and biological factors that drive regional
differences in WM intensity (van Walderveen et al., 2003).

As an optimal smoothing distance value, 50 mm is suggested,
despite the fact that 30 mm facilitates a larger decrease in the
underestimation error for problematic regions. The distance of 50 mm
appears to be a ‘safer’ choice because, unlike 30 mm, it does not affect
WM estimation in non-problematic locations.

The results also highlight that, using lower N3 smoothing distance
values can improve sensitivity to small changes in brain structure
volumes/thicknesses. For example, at a smoothing distance of
200 mm, one scanner had a reliability performance 1.5 times worse
than another (mean absolute thickness difference of 0.10 mm vs.
0.07 mm), suggesting that the former scanner would be much less
sensitive to small changes in regional cortex thickness. However,
when applying smoothing distances of 30–50 mm, inter-scanner
differences narrow (0.067 mm vs. 0.060 mm).

It remains to be seen whether the current findings can be
extended to segmentation approaches other than FreeSurfer. It is
well known that some segmentation algorithms, such as edge based
(Mcinerney and Terzopoulos, 1996; Paragios, 2001; Ravinda and
Rajapakse, 2003) and several variants of region growing approaches
(Adams and Bischof, 1994; Hojjatoleslami and Kittler, 1998), are
robust to slow variation in intensity. Intensity non-uniformity
primarily affects the segmentation performance of methods relying
on statistical classification of voxel intensities (Ahmed et al., 2002;
Kovacevic et al., 2002; Marroquin et al., 2002; Pham and Prince,
1999; Van Leemput et al., 1999, 2003; Wells et al., 1996; Zhang et al.,
2001). The sensitivity of the FreeSurfer segmentation approach to
intensity non-uniformity follows from its reliance on a mixture of
edge based and statistical classification segmentation algorithms
(Fischl et al., 2002, 2004b; Han and Fischl, 2007). For example, while
FreeSurfer's surface estimation is based on a deformable algorithm,
the initialization of the surface deformation is provided by initial
coarse segmentation, which is based on statistical classification and
facilitated by a probabilistic atlas. An error in initialization can lead
to the deformable surface algorithm being trapped at a wrong edge
(Dale et al., 1999; Mcinerney and Terzopoulos, 1996). Moreover, the
energy functional that guides the WM surface deformation process
contains a term that penalizes the sum of intensity variances inside
each tissue, which can also make the segmentation sensitive to
intensity non-uniformity.

Conclusion

Adopting the FreeSurfer segmentation pipeline for illustrative
purposes, we demonstrated that for N3, a non-uniformity correction
technique in widespread use, a smoothing distance of 30–50 mm,
significantly improves the accuracy and reliability of brain tissue
segmentation. The finding could contribute to enhancing the accuracy
of brain morphometry studies where cerebral cortex thicknesses, its
change over time or following neurological disease are important
endpoints.
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