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Evaluation of Performance Metrics for Bias Field
Correction in MR Brain Images

Zin Yan Chua, BS,1 Weili Zheng, PhD,1 Michael W.L. Chee, MBBS,2 and
Vitali Zagorodnov, PhD1*

Purpose: To investigate inconsistencies between common
performance measures for bias field correction reported in
several recent studies and propose a solution.

Materials and Methods: A set of synthetic images of a
normal brain from the Montréal Simulated Brain Data-
base (SBD) was processed using two bias field correction
algorithms. The parameters of these algorithms were var-
ied and the resulting outputs were assessed using sev-
eral performance measures. Validity was estimated using
Spearman rank correlation coefficient between “indirect”
performance measures and the L2 norm of the difference
between true and estimated bias fields. The “indirect”
performance measures tested were: coefficients of varia-
tion of white matter (WM) and gray matter (GM), coeffi-
cient of joint variation. These measures were tested on
bias field-corrected images that were permuted in terms
of quality of WM/GM segmentation as well as the pres-
ence or absence of light smoothing.

Results: Existing indirect performance measures yielded
poor validity scores, explaining the inconsistencies re-
ported in the literature. Image noise and inappropriate in-
clusion of partial volume voxels and neighboring tissues
were found to be contributory. Combining conservative seg-
mentation and smoothing significantly improved validity.

Conclusion: The use of indirect performance measures in
the conventional manner to guide bias field correction is
unreliable. Using these metrics on lightly smoothed images
with conservatively segmented tissues proved more reliable
for guiding the selecting of parameters for nonuniformity
correction ultimately contributing to more accurate brain
segmentation.
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THE PRESENCE OF intensity nonuniformity in images
obtained from high-field magnetic resonance (MR) sys-
tems may adversely affect qualitative and quantitative
image analysis. Intensity nonuniformity is character-
ized by the occurrence of a smoothly varying and mul-
tiplicative intensity field, also referred to as a bias field.
Poor radiofrequency (RF) coil design, gradient-eddy
currents, local variations in flip angle, and subject–
scanner interactions are contributory (1). While some of
these factors can be dealt with in hardware, for exam-
ple, “central brightening” can be reduced with a mul-
tichannel phased-array receiver coil (2), a degree of ret-
rospective correction is often beneficial. There exist
detailed reviews of recent retrospective nonuniformity
correction algorithms (1,3–5).

As there are many performance validation measures,
selecting the best correction algorithm can be difficult.
Existing correction measures can be categorized into
three groups (5):

1) Measures comparing true and estimated bias fields.
These include correlation (6), root mean square error
(RMS) (7–9), standard deviation error (STD) (10), mean
square error (MSE), and mean square distance (MSD)
(4,11). The application of these measures is usually
limited to simulated images, as the true bias field con-
tained in actual MR images is unknown.

2) Measures based on intensity variability. These rely
on the fact that bias field increases intensity variation
within each tissue and assume that there is no change
in noise level or scaling in mean intensity across tis-
sues. Popular methods in this category include coeffi-
cient of variation of white matter (CVWM), coefficient of
variation of gray matter (CVGM) (3,10,12–18), and coef-
ficient of joint variation (CJV) between WM and GM
(3,10,14,15). Minimizing CJV results in minimizing in-
tensity variability within each tissue, while maintaining
a good separation between mean tissue intensities. This
circumvents the problem of poor segmentation perfor-
mance, consequent on increase in overlap between in-
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tensity distributions. Both CV and CJV minimally re-
quire a coarse (but conservative) tissue labeling for WM
and GM.

3) Measures based on segmentation performance.
These use the quality of subsequent segmentation as a
marker of the bias field correction performance, and
include false-positive (FP) and false-negative (FN) rates
(4), misclassification ratio (MCR) (19–21), Jaccard Sim-
ilarity (JS) (18,22), and Dice coefficient (20,23,24).

The metrics belonging to the last two categories can
be referred to as indirect, as the quality of the nonuni-
formity correction is derived indirectly through tissue
intensity variability or segmentation performance. A
survey of the recent literature revealed that such met-
rics often lead to conflicting suggestions regarding a
best-performing method. For example, consider the
data in Table 1, excerpted from a performance evalua-
tion study (14), that compared three approaches
(SPM99-S, N3, and NIC) using three indirect measures
(CVWM, CVGM, and CJV). On the basis of CVWM, SPM99-S
(25) was the best-performing method. However, it was
the worst performer if CJV was used. According to CVGM

and CJV, the best-performing method was NIC (14). The
N3 correction algorithm (17) was the worst-performing
according to CVWM and CVGM but second best according
to CJV. Similar inconsistencies have been reported in
other studies (3,10,15).

Given that a direct measurement of the bias field in
experimentally collected human subject MR data is not
feasible, it is important to determine the validity of the
indirect metrics, ie, their ability to consistently reflect
the quality of the true bias field correction, character-
ized by direct metrics. Here we established a link be-
tween direct and indirect measures using a simulated
dataset in which the bias field is known a priori. Our
experiments show that the existing measures may ex-
hibit poor validity, particularly when the underlying
WM/GM segmentation is subpar. Conservative labeling
of WM/GM can increase validity and this can be incre-
mented further by slight smoothing of the image data.

MATERIALS AND METHODS

Modeling Intensity Nonuniformity

The intensity nonuniformity is usually modeled using a
smooth multiplicative field (1,5,13,16,19,21):

I�s� � Btrue�s�I0�s� � n�s� [1]

Here s denotes a voxel, I(s) and I0(s) are the intensities
of corrupted and ideal (without noise and intensity non-
uniformity) images, respectively. Btrue(s) denotes the

bias field and n(s) is the image noise. This model is
consistent with RF field mapping theory that links voxel
intensities with RF coil transmission and reception sen-
sitivity.

The goal of bias field correction is to estimate the
unknown Btrue(s) given I(s), and to then use Btrue(s) to
obtain an intensity corrected image. Without additional
constraints this problem is inherently ill-posed, as

there can be infinite combinations of Btrue(s) and
I0(s)
0

, all

giving rise to the same product, Btrue(s)Io. To obtain a
unique solution, most current methods regularize the
problem by assuming that the bias field is spatially
smooth and that tissue intensities fall into a finite set of
discrete classes (GM, WM, and cerebrospinal fluid
[CSF]), or that the peaks of intensity distribution are
sharpest when nonuniformity has been corrected (9).
These assumptions do not hold exactly for images ob-
tained from human subjects, as a result of partial vol-
ume effects or biologically driven regional differences in
image intensity (26), yet they underpin the majority of
current methods.

Performance Measures Tested

For a direct measure, we used the normalized L2-norm
of the difference between the true Btrue(s) and the esti-
mated Best(s) bias fields, defined as:

L2 �
min
w ��

s

�wBest�s� � Btrue�s��2

�
s

Btrue
2 �s�

[2]

where w is the normalization coefficient. Normalization
is necessary because nonuniformity correction can re-
sult in an arbitrary scaling of the bias field. It is
straightforward to show that the coefficient w must
satisfy:

w �

�
s

Btrue�s�Best�s�

�
s

Best
2�s�

[3]

For the indirect measures, we used common CV and
CJV, which are defined as:

CVT �
��T�

��T�
, CJV �

��WM� � ��GM�

���WM� � ��GM�� [4]

where T is a single tissue class (WM or GM) and �(T),
�(T) denote the standard deviation and the mean inten-
sity within T, respectively. In this context, smaller CV
and CJV correspond to smaller remaining bias field and
hence better correction performance.

Measuring the Validity of Indirect Measures

Validity, in a statistical sense, refers to the consistency
between a measurement and a criterion. In the context
of nonuniformity correction, measurements are repre-

Table 1
Excerpt of Performance Evaluation Results From Table II of Ref.
14 (1.5 T Scanner)

CVWM CVGM CJV

SPM
99-S 5.53 16.31 93.40
N3 5.88 16.47 83.95
NIC 5.84 15.70 80.77
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sented by indirect measures and the criterion by direct
measures. Consistency is defined as a monotonic rela-
tionship between the measures. An indirect measure �
is perfectly consistent with the direct measure d, if for
any two corrected results c1 and c2, d(c1) � d(c2) implies
�(c1) � �(c2). None of the issues raised in the introduc-
tion would arise if indirect measures behaved in this
manner.

We chose Spearman rank correlation coefficient � as
a metric for validity. Spearman correlation between two
sets of data Xi and Yi is defined as the Pearson product-
moment coefficient in which Xi and Yi are converted to
rankings xi and yi (27). Perfect consistency between
indirect and direct measures implies a preservation of
rank order, hence � � 1. Violations of consistency for at
least some data points would lead to a mismatch be-
tween rankings and a reduction of �.

Factors Contributing to the Reduced Validity of
Indirect Measures

To examine the factors that contribute to reduced con-
sistency between tissue intensity variability and non-
uniformity we used a simple simulation. The bias field
was modeled using a linear function and image noise
was generated using the MatLab (MathWorks, Natick,
MA) function “randn” (Figs. 1, 2). Here the intensity
variability can be visually gauged by the width of the
histogram provided on the right side of the plots. As
shown in the upper plot of Fig. 1, both image noise and
bias field contribute to variability. The correction re-
duces or eliminates the bias field, resulting in reduced
intensity variability, as shown in the lower plot (Fig. 1).
However, when several data points from a different tis-
sue were erroneously included in the reference tissue,
the postcorrection variability actually increased by al-
most 10% (from 0.022 to 0.024; see Fig. 2). This was

caused by nonuniformity-caused intensity overlap be-
tween the darker (smaller amplitude) points of the ref-
erence tissue and the wrongly included data points. The
correction eliminated this overlap, producing a flatter
left tail in the histogram (caused by wrongly included
voxels) and a concomitant increase in variability.

These observations suggest two causes for the de-
crease in validity of indirect measures: nonideal tissue
segmentation and image noise. To test the first part of
this hypothesis we evaluated indirect measures under
three types of underlying GM/WM segmentation:

1) Ideal segmentation. Perfect labeling of GM and WM
tissues, taking into account partial volume voxels
(3,4,10,15).

2) Conservative segmentation. Ideal segmentation fol-
lowed by exclusion of partial volume voxels (9,28), im-
plemented using morphological one-voxel deep erosion
of each tissue class. Conservative segmentation can
also be achieved manually (18).

3) Corrupted segmentation. Segmentation obtained by
intentionally introducing misclassified voxels into ideal
segmentation to model potential errors that may arise
during expert-guided or automatic segmentation. The
corruption was achieved by adding Gaussian noise to
each binary class label with subsequent thresholding
and removal of disconnected voxels.

To test the second part of the hypothesis, we included
a novel set of indirect measures (referred to as modified
CV and CJV), which were applied on slightly smoothed
image data. The smoothing was achieved by replacing
the intensity value of each voxel with the mean intensity
of the 3 	 3 	 3 voxel cube enclosing it. Smoothing was
restricted to individual tissue classes to avoid averaging
across tissue boundaries. We expected this small
smoothing kernel to reduce variability due to image
noise, without significantly influencing the shape of the
bias field (assumed to be very smooth).

Figure 2. Failure of the coefficient of variation when a differ-
ent tissue region is included.

Figure 1. The link between tissue variability and intensity
nonuniformity.
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Data and Experiment Setup

We used synthetic 1 	 1 	 1 mm resolution T1-weighted
MR data from the Montréal Simulated Brain Database
(29–31) that was designed to simulate images of a normal
brain, corrupted by various degrees of noise and intensity
nonuniformity. In total, nine volumes were used, includ-
ing all possible combinations of 0%, 20%, and 40% bias
fields and 1%, 3%, and 5% noise. Exact tissue labeling
(WM, GM, and CSF), provided by the dataset, was used for
evaluation of indirect measures.

The experimental setup was as follows: each volume
in the dataset was corrected for intensity nonuniformity
by two algorithms, producing a set of corrected volumes
together with their estimated bias fields. The direct
measure [2] was then applied to the estimated bias
fields, comparing them with the ground truth, while the
three indirect metrics [4] were applied to the corre-
sponding corrected volumes.

The two bias field correction algorithms correspond to
two approaches: histogram sharpening (4,15,17,19,22)
and surface fitting (3,13,16,32). The first algorithm was
implemented on the basis of N3 (17), which iterates
between sharpening of the image histogram (by decon-
volving it with a Gaussian kernel), using the sharpened
histogram to estimate the bias field at each voxel loca-
tion, and imposing smoothness on the bias field. To
obtain different correction samples, the smoothing ker-
nel size was varied from 30 mm to 200 mm, in 10-mm

increments. This was the key parameter pertaining to
the amount of correction required (9). Smaller kernel
sizes may result in a better fit to the true bias field, but
can cause overfitting to noise and small image struc-
tures. Larger kernel sizes afford more conservative cor-
rection. The brain mask also exerts a substantial influ-
ence on the performance of this approach (12).
Consequently, correction was applied to images with
and without a brain mask, resulting in a total of 18 	
2 	 9 � 324 different image sets.

The second algorithm (surface fitting) was imple-
mented as follows. First, a coarse portion of the WM
region was estimated using a standard region-growing
procedure. Implementation began with a seed point,
chosen automatically within the WM, and iteratively
expanded into neighboring voxels based on intensity
similarity. The parameters of the region-growing algo-
rithm were chosen so that the resultant region conser-
vatively estimated the WM. The intensities of the voxels
within the estimated portion were then modeled using a
linear combination of smooth-varying polynomials up
to the third degree. The model coefficients were esti-
mated using the method of least-squares. The perfor-
mance of this approach is dependent on the highest
polynomial degree used (higher degrees lead to sharper
estimated bias fields and better fitting) and the size of
the WM region (lager regions are less sensitive to noise
but may overgrow into neighboring image structures).

Figure 3. Scatterplots of CVWM, CVGM, and CJV versus L2-norm using ideal (a), conservative (b), and corrupted (c) WM/GM
segmentations.
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In order to obtain different samples, region-growing pa-
rameters were manipulated. The generated regions
from 5% to 60% of the WM were ramped up in 5%
increments. The highest-order polynomial used varied,
from 1 to 3. This process produced 12 	 3 	 9 � 324
corrected images and corresponding estimated bias
fields.

RESULTS

Qualitative Results

Figures 3 and 4 show the scatterplots between all indi-
rect metrics and L2-norm using ideal, conservative, and
corrupted WM/GM segmentations. Here we combined
results from the volumes with 3% noise and three bias
field strengths (0%, 20%, and 40%).

The plots confirmed our expectation that segmenta-
tion quality can significantly affect the validity of indi-
rect metrics. Overall, using conservative segmentation
produced the most tightly clustered plots, the only ex-
ception being CJV evaluated using ideal segmentation.
Preserving partial volume voxels (as in ideal segmenta-
tion) had a detrimental effect on CVWM and CVGM, in-
creasing the scatter, with a further decrease in quality
for all three metrics when the segmentation was cor-
rupted. In particular, some portions of the scatterplots
had negative slopes, reversing the relationship between
the metrics.

The modified indirect metrics, eg, metrics applied on
smoothed image data, showed little improvement over
the traditional metrics when evaluated using ideal or
corrupted segmentations (Fig. 4a,c). In this case the
main source of variability was the presence of a mixture
of tissues inside the mask, variability that would not be
reduced by smoothing. However, substantial improve-
ment was observed when using conservative segmenta-
tion, especially in the case of modified CVWM and CJV
(Fig. 4b). The modified CVGM showed less improvement,
probably due to a smaller averaging effect on the thin
GM layer, as an isotropic smoothing kernel was used.

Based on the scatterplots, among the traditional met-
rics the three best performing were CVWM and CVGM,
evaluated using conservatively segmented images, and
CJV, evaluated using ideally segmented images. Among
the modified metrics, the three best-performing mea-
sures were CVWM, CVWM, and CJV, evaluated using con-
servatively segmented images.

Quantitative Results

Table 2 shows the Spearman correlation coefficients for
all noise levels, segmentation types, and metrics. Over-
all, there was good agreement with the qualitative ob-
servations. Conservative segmentation improved the
validity of CVWM and CVGM, but CJV was best with ide-
ally segmented images. Smoothing had little effect on

Figure 4. Scatterplots of modified CVWM, CVGM, and CJV versus L2-norm using ideal (a), conservative (b), and corrupted (c)
WM/GM segmentations.
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Table 3
Optimization and Comparison of Two Bias Field Correction Algorithms on a BrainWeb MR Volume With 3% Noise and 20% Bias Field
Using Ideal Segmentation and Traditional Indirect Performance Measures

Parameter value Direct Indirect

L2 CVWM CVGM CJV

Histogram sharpening
30 0.0224 0.0499 0.0993 0.5325
40 0.0173 0.0505 0.0997 0.5234
50 0.0144 0.0506 0.0994 0.5201
60 0.0123 0.0516 0.0997 0.5180
70 0.0124 0.0528 0.1001 0.5184
80 0.0114 0.0530 0.1000 0.5181
90 0.0137 0.0542 0.1006 0.5202
100 0.0139 0.0545 0.1007 0.5207
110 0.0168 0.0558 0.1014 0.5240
120 0.0175 0.0562 0.1016 0.5250
130 0.0183 0.0566 0.1018 0.5261
140 0.0192 0.0570 0.1020 0.5273
150 0.0202 0.0574 0.1023 0.5287
160 0.0211 0.0578 0.1026 0.5301
170 0.0220 0.0582 0.1029 0.5315
180 0.0228 0.0585 0.1031 0.5326
190 0.0236 0.0589 0.1034 0.5338
200 0.0244 0.0592 0.1036 0.5349

Surface fitting
5 0.0246 0.0571 0.1035 0.5380
10 0.0047 0.0519 0.0991 0.5164
15 0.0036 0.0520 0.0990 0.5154
20 0.0034 0.0519 0.0990 0.5153
25 0.0031 0.0518 0.0991 0.5150
30 0.0034 0.0517 0.0991 0.5150
35 0.0034 0.0516 0.0992 0.5144
40 0.0064 0.0515 0.0998 0.5135
45 0.0104 0.0516 0.1007 0.5142
50 0.0163 0.0515 0.1021 0.5194
55 0.0169 0.0515 0.1022 0.5198
60 0.0164 0.0514 0.1021 0.5194

Table 2
Spearman Correlation Coefficients Between Direct and Indirect Metrics

Measures
Noise (%) Average

1 3 5

Ideal segmentation Traditional CVWM 0.46 0.39 0.43 0.43 0.66
CVGM 0.67 0.77 0.78 0.74
CJV 0.89 0.89 0.65 0.81

Modified CVWM 0.47 0.43 0.39 0.41 0.67
CVGM 0.74 0.84 0.86 0.83
CJV 0.66 0.79 0.85 0.76

Conservative segmentation Traditional CVWM 0.94 0.84 0.71 0.83 0.77
CVGM 0.89 0.91 0.89 0.88
CJV 0.95 0.66 0.13 0.60

Modified CVWM 0.96 0.97 0.96 0.96 0.94
CVGM 0.87 0.90 0.90 0.89
CJV 0.97 0.97 0.95 0.96

Corrupted segmentation Traditional CVWM 0.48 0.40 0.53 0.47 0.51
CVGM 0.75 0.63 0.52 0.63
CJV 0.66 0.45 0.17 0.43

Modified CVWM 0.49 0.44 0.58 0.50 0.71
CVGM 0.82 0.74 0.75 0.77
CJV 0.87 0.86 0.83 0.85

Values highlighted in bold correspond to correlation of 0.85 and higher. Bold underlined values correspond to correlations exceeding 0.95.
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validity for measures evaluated using ideal and cor-
rupted segmentations, but led to substantial improve-
ment in combination with conservatively segmented
images. The improvements were particularly notable for
images with a large amount of noise (5%). For example,
the modified CJV had practically the same correlation
as the traditional CJV (0.97 vs. 0.95) at noise level of
1%; at 5% noise level the smoothing improved correla-
tion from 0.12 to 0.95 (Table 2). The observed improve-
ment at high noise levels is consistent with the predic-
tion that noise reduction makes it easier to detect
smaller changes in intensity nonuniformity.

In sum, the modified versions of CVWM and CJV eval-
uated using conservatively segmented images achieved
the highest validity across all tested indirect metrics,
with Spearman correlation coefficient exceeding 0.95 at
all noise levels.

Practical Applications

To illustrate a practical ramification of our findings,
consider the results of using traditional and modified
indirect measures to assess a subset of corrected syn-
thetic brain images that contained 3% noise and 20%
intensity inhomogeneity (Tables 3, 4). Critically, using

different traditional validity measures led to widely di-
vergent suggestions regarding the optimal histogram
sharpening and surface fitting parameters. On the ba-
sis of the direct measure alone, the optimal parameter
was 80 for histogram sharpening and 25 for surface
fitting. Overall, surface fitting achieved better perfor-
mance in this example (L2-norm value of 0.003 for sur-
face fitting vs. 0.011 for the histogram sharpening).
Using the traditional indirect measures on ideally seg-
mented images led to completely different conclusions
(Table 3). On the basis of CVWM the best parameter
values were 30 (histogram sharpening) and 60 (surface
fitting) and the former approach outperformed the lat-
ter, contradicting the results obtained using the direct
measure. Using CVGM and CJV correctly identified the
best-performing method but led to wrong parameter
choices. These findings were consistent with the results
in Table 2, which suggested that CJV should have been
the best-performing metric under these conditions,
with CVGM a close second.

When the traditional indirect metrics were evaluated
using conservatively segmented images, CVWM and
CVGM were able to correctly identify the best-performing
method (Table 4) and were better than CJV at finding

Table 4
Optimization and Comparison of Two Bias Field Correction Algorithms on BrainWeb MR Volume With 3% Noise and 20% Bias Field
Using Conservative Segmentation and Both Traditional and Modified Indirect Performance Measures

Parameter value Direct Indirect

L2 Traditional Modified

CVWM CVGM CJV CVWM CVGM CJV

Histogram sharpening
30 0.0224 0.0348 0.0566 0.3114 0.0199 0.0353 0.1867
40 0.0173 0.0325 0.0555 0.2880 0.0156 0.0335 0.1580
50 0.0144 0.0316 0.0544 0.2801 0.0136 0.0318 0.1447
60 0.0123 0.0307 0.0538 0.2686 0.0116 0.0307 0.1305
70 0.0124 0.0305 0.0539 0.2632 0.0111 0.0307 0.1261
80 0.0114 0.0304 0.0534 0.2612 0.0107 0.0301 0.1229
90 0.0137 0.0309 0.0541 0.2607 0.0120 0.0310 0.1281
100 0.0139 0.0309 0.0541 0.2603 0.0123 0.0311 0.1290
110 0.0168 0.0318 0.0551 0.2626 0.0143 0.0328 0.1392
120 0.0175 0.0320 0.0553 0.2631 0.0148 0.0332 0.1418
130 0.0183 0.0324 0.0556 0.2643 0.0155 0.0337 0.1453
140 0.0192 0.0327 0.0559 0.2655 0.0162 0.0344 0.1488
150 0.0202 0.0330 0.0563 0.2667 0.0169 0.0351 0.1526
160 0.0211 0.0334 0.0568 0.2682 0.0176 0.0357 0.1562
170 0.0220 0.0337 0.0572 0.2697 0.0182 0.0363 0.1594
180 0.0228 0.0340 0.0576 0.2710 0.0187 0.0369 0.1624
190 0.0236 0.0343 0.0581 0.2724 0.0192 0.0376 0.1654
200 0.0244 0.0345 0.0586 0.2738 0.0197 0.0383 0.1684

Surface fitting
5 0.0246 0.0330 0.0591 0.2764 0.0167 0.0391 0.1639
10 0.0047 0.0293 0.0532 0.2647 0.0069 0.0296 0.1109
15 0.0036 0.0292 0.0526 0.2609 0.0068 0.0285 0.1067
20 0.0034 0.0292 0.0527 0.2622 0.0068 0.0287 0.1077
25 0.0031 0.0292 0.0527 0.2617 0.0068 0.0287 0.1073
30 0.0034 0.0292 0.0529 0.2632 0.0068 0.0290 0.1088
35 0.0034 0.0293 0.0529 0.2630 0.0069 0.0291 0.1091
40 0.0064 0.0294 0.0538 0.2649 0.0075 0.0306 0.1152
45 0.0104 0.0297 0.0552 0.2686 0.0086 0.0331 0.1255
50 0.0163 0.0302 0.0586 0.2831 0.0102 0.0385 0.1485
55 0.0169 0.0305 0.0588 0.2844 0.0109 0.0388 0.1520
60 0.0164 0.0305 0.0584 0.2841 0.0111 0.0382 0.1513
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the optimal parameter values. This is consistent with
the finding that CJV achieved only a 0.66 correlation
with the direct measure (Table 2). Among the modified
measures, all three correctly identified the best-per-
forming method. In addition, the modified CVWM and
CJV produced veridical parameter values for both cor-
rection approaches.

DISCUSSION

We have shown that existing indirect measures that
assess performance of bias field correction approaches
have mediocre validity (correlation of 0.67 on average),
which explains why they often lead to conflicting state-
ments regarding a best-performing method. Image
noise and inclusion of partial volume voxels and neigh-
boring tissues were implicated as likely reasons. We
demonstrated that the combined effect of conservative
segmentation and smoothing significantly improves va-
lidity.

It is often argued that CJV is preferable to CVWM and
CVGM. For example, CV can be difficult to interpret when
it improves for one tissue class but not for others (5,14).
It is also possible for a correction method to transform
a given image, so that CV of two tissues is improved
while the overlap between their intensity distributions
is increased, making subsequent segmentation difficult
(5,15). Our experimental results (Table 2, Figs. 3, 4)
suggest that at least for the chosen algorithms and
parameter ranges, CVWM is equal and even preferable to
CJV. We found that CJV performed better compared to
other metrics when these were evaluated using ideally
segmented images. However, the situation was reversed
when conservatively segmented images were used, es-
pecially when the image noise was large. Even though
combining conservative segmentation and smoothing
equalizes the quality of CVWM and CJV, the former
would still be preferable. GM segmentation, necessary
for evaluation of CJV, is susceptible to errors, whether
obtained by an expert or through an automatic segmen-
tation algorithm, diminishing the validity of CJV to the
level of poorly segmented images.

However, when relying on CVWM alone, a sufficient
amount of smoothing should be applied to avoid reduc-
tion of contrast between GM and WM, undetectable by
CVWM. To achieve this, smoothing kernel size for histo-
gram sharpening should be maintained above 30 mm
and polynomial order for surface fitting should be kept
below 4.

The results presented here were obtained using sim-
ulated data and it is unclear whether they hold for real
MR data. For example, human subject MR brain data
exhibits regional variation in WM and GM tissue inten-
sity (26), resulting in nonuniformities that cannot be
adequately modeled (1). Further research is needed to
address this issue.

In conclusion, our findings suggest that assessing
the quality of nonuniformity correction from indirect
performance measures applied in a traditional fashion
can yield inappropriate guidance for parameter selec-
tion during inhomogeneity correction. However, if these
metrics are used on lightly smoothed images with con-
servatively segmented tissues, their validity improves

considerably, potentially resulting in more appropriate
correction of intensity inhomogeneities that could ulti-
mately result in more accurate segmentation of brain
tissues.
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