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Removal of non-brain tissues, particularly dura, is an important step in enabling accurate measurement of
brain structures. Many popular methods rely on iterative surface deformation to fit the brain boundary and
tend to leave residual dura. Similar to other approaches, the method proposed here uses intensity
thresholding followed by removal of narrow connections to obtain a brain mask. However, instead of using
morphological operations to remove narrow connections, a graph theoretic image segmentation technique
was used to position cuts that isolate and remove dura. This approach performed well on both the
standardized IBSR test data sets and empirically derived data. Compared to the Hybrid Watershed Algorithm
(HWA; (Segonne et al., 2004)) the novel approach achieved an additional 10–30% of dura removal without
incurring further brain tissue erosion. The proposed method is best used in conjunction with HWA as the
errors produced by the two approaches often occur at different locations and cancel out when their masks
are combined. Our experiments indicate that this combination can substantially decrease and often fully
avoid cortical surface overestimation in subsequent segmentation.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Accurate “skull stripping” involves removal of the scalp, skull and
dura, and is an important procedure in brain image analysis. Tissue
classification, registration, volumetric analysis of the brain and
cortical surface reconstruction all benefit from the accurate removal
of these non-brain tissues. In particular, the removal of dura while
leaving brain tissue untouched is especially important when estimat-
ing cortical thickness (Freesurfer (Dale et al., 1999), CLASP (Kim et al.,
2005)) or gray matter volume (voxel based morphometry (VBM)
(Ashburner and Friston, 2000), SIENAX (Smith et al., 2002), part of FSL
(Smith et al., 2004)). Unintended removal of the cortical surface
cannot be reversed downstream in the processing pipeline and will
result in underestimation of cortical thickness. Inclusion of non-brain
structures can result in reduced VBM sensitivity (Fein et al., 2006),
while dural attachments can cause overestimation of cortical
thickness (van der Kouwe et al., 2008). This has resulted in the
proposal of a variety of skull stripping techniques, such as region-
based (Hahn and Peitgen, 2000; Shattuck et al., 2001), boundary-
based (Smith, 2002; Zhuang et al., 2006) and hybrid approaches
(Huang et al., 2006; Segonne et al., 2004).

Themajority of skull stripping algorithms treat the brain as a single
connected region separated from non-brain tissues by a rim of
cerebrospinal fluid (CSF). In reality, even with high-resolution T1W
ll rights reserved.
MR images, thin connections between the brain and other cranial
structures exist in the form of dura and connective tissue lining
venous sinuses (Lemieux et al., 1999), (Fig. 1A). These connections
reduce the accuracy of skull stripping (Figs. 1B–E).

Each of the existing skull stripping techniques has strengths and
weaknesses. Brain Surface Extractor (BSE) (Shattuck et al., 2001) uses
a combination of anisotropic diffusion filtering, Marr–Hildreth edge
detector andmorphological operators to separate brain and non-brain
tissues. Typical of edge-based approaches, it may lead to inappro-
priate removal of brain tissue, contributed in part by reduced brain
signal intensity adjacent to false connections, (Fig. 1B). The Water-
shed Algorithm (WAT) (Hahn and Peitgen, 2000), an intensity-based
approach, relies on a 3D algorithm with pre-flooding performed on
the intensity inverted image, selecting the basin to represent the
brain. It may fail to remove dura, skull and various non-brain struc-
tures in the neck/eye area (Fig. 1C). The irregular, anatomically
implausible brainmasks sometimes generated by BSE andWAT can be
avoided by imposing additional smoothness constraints with a
deformable surface model, which is then fitted onto the brain surface
by a set of internal and external forces. This method is utilized by
Brain Extraction Tool (BET) (Smith, 2002) and Hybrid Watershed
Algorithm (HWA) (Segonne et al., 2004). Deformation of BET's mask is
guided by constraints on surface smoothness and voxel intensities in
the vicinity of the surface position. HWA is a hybrid approach
combining watershed algorithm and deformable model, where the
latter adds atlas based shape constraints in order to guarantee anato-
mically meaningful brain mask. However, even additional constraints
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Fig. 1. Typical results of existing skull stripping techniques (A) Original image, (B) BSE, (C) WAT, (D) BET, (E) HWA, (F) Simple intensity thresholding.
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do not always resolve the problem, because segmentation can be
smooth and still lead to brain loss (Fig. 1D) or include non-brain
tissues (Figs. 1D, E).

Despite the fact that among existing solutions HWA is the only
approach that is very careful at preserving the brain, suiting it for
subsequent cortical thickness estimation, it can greatly benefit from
further stripping of the dura (Fennema-Notestine et al., 2006). The
alternative approach proposed here sought to achieve further dura
reduction while maintaining the same low rate of brain loss, in order
to facilitate more accurate estimation of cortical thickness.
Fig. 2.Usingmorphological opening to cut narrow connections. Small erosion size (upper row
in red. Larger erosion size (lower row) cuts wider connections but leads to erosion of brain
Our method was motivated by work (Atkins and Mackiewich,
1998; Kapur et al., 1996; Lemieux et al., 1999) that suggested
segmenting the brain by using simple intensity thresholding followed
by morphological opening operations to cut the narrow connections.
Instead of morphological operations, which can only remove
sufficiently narrow connections, the proposed approach relies on
graph theoretic image segmentation techniques to position cuts that
serve to isolate and remove dura. To establish the advantages of this
approach, we evaluated its performance on legacy standardized test
images as well as images collected using a more contemporary MR
) is useful for very narrow connections, leaving substantial non-brain tissue highlighted
tissue.



Fig. 3. Using distance transform followed by the watershed algorithm to cut narrow connections. Initial mask (left column) is processed by distance transform (middle column)
followed by the watershed algorithm (right column). This approach worked well on simple shapes (upper row), but led to over-segmentation of the brain mask.
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scanner. We compared our results with those obtained using current
state-of-the-art techniques.

Materials and methods

Previous work on removal of narrow connections

The morphological framework for removal of narrow connections
(MORPH), which forms the basis of (Atkins and Mackiewich, 1998;
Kapur et al., 1996; Lemieux et al., 1999), is illustrated in Fig. 2 and
consists of mask erosion, selection of the largest connected region and
dilation of the same size as the erosion. Connections with widths less
than the amount of erosion (controlled by the size of the structural
element) are removed and are not restored following dilation. A
drawback of this procedure is that only sufficiently narrow connec-
tions are removed (Fig. 2, upper row). Attempting to remove wider
Fig. 4. Cutting narrow connections with ISO. Among all possible partitions of foreground regio
chosen.
connections results in substantial elimination of brain tissue (Fig. 2,
lower row).

Another frequently used technique involves distance transform
followed by watershed algorithm (DWAT), see examples in (Grady,
2006; Park and Keller, 2001). The distance transform assigns each
voxel in the binary mask a value equal to the shortest distance from
this voxel to the boundary (Fig. 3). The watershed algorithm
interprets lower values of the distance transform (occurring at voxels
inside narrow connections) as valleys and higher values (occurring at
voxels deeper inside the mask) as hills, as it segments the mask into a
set of hills separated from each other by valleys. This works well for
simple shape masks, (Fig. 3, upper row), but with brain data, valleys
are created within the brain substance, negating the benefit of
eliminating narrow connections (Fig. 3, lower row).

Our cutting algorithm was inspired by the isoperimetric graph
partitioning (ISO) approach (Grady, 2006), which sets the problem in
n, the onewith the smaller ratio of the cut value and the volume of smaller element was



Fig. 5. The pipeline of proposed skull stripping approach.
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a graph theoretic framework (Fig. 4). Here the image is treated as a
weighted undirected graph G=(V, E, W), where V, E and W are sets
of vertices, edges and edge weights respectively. The edges refer to
connections between any two vertices and the edge weights are
arbitrary values assigned to each edge. The goal of ISO is to partition
the vertices of the graph into two connected sets S and S̄ so that
isoperimetric ratio is minimized. The isoperimetric ratio is defined as
a ratio of the cut value—the sum of edge weights along the boundary
between the partitions, jδS j = P

ias
P

jas� wi;j, and the volume (the
number of vertices) of the smaller partition element S, Vol (S):

c = inf
s

jδS j
Vol Sð Þ ;Vol Sð ÞV1

2
Voltotal ð1Þ

where Voltotal designates the total number of vertices in the graph.
Startingwith an initial mask, consisting of the foreground F and the

background B regions (Fig. 4), ISO examines all possible ways to cut F
into two sub-regions, choosing the cut with the smallest isoperimetric
ratio. For example, between the two cuts shown in Fig. 4, Vol(S1)bVol
(S2) and |δS1|=6N |δS2|=3. Hence c1 = jδS1 j

Vol S1ð Þ N c2 = jδS2 j
Vol S2ð Þ and the

second cut will be chosen.

Proposed approach

The proposed method of skull stripping uses three groups of
operations. These are: thresholding to obtain preliminary mask,
removal of narrow connections using graph cuts and post-processing
(Fig. 5). The goal of the last step is to reinstate partial volume gray
matter (GM) voxels inadvertently removed following thresholding.
Fig. 6. Effect of different threshold values on the quality of initial mask. Too low threshold (s
too high threshold (right column) results in brain loss.
Obtaining preliminary mask
The initial thresholded mask must satisfy two conditions:

(1) The brain should be weakly connected to non-brain structures.
(2) The mask should preserve as much brain as possible, since the

subsequent narrow connection removal can only further
reduce the mask.

For T1W images, an appropriate intensity threshold lies some-
where between the mean intensities of GM and CSF. Threshold values
that are too lowmay lead to the inclusion of CSF and dura, resulting in
the appearance of strong connections between brain and the cranial
vault (Fig. 6). Values that are too high may provide a clearer
demarcation between brain and non-brain structures but at the
expense of brain erosion. The desired threshold results in a mask with
sufficiently narrow connections and acceptable brain loss that can be
compensated for during post-processing (Fig. 6).

Existing methods of threshold selection utilize the image histo-
gram—using the histogram's first valley (Atkins and Mackiewich,
1998) or fitting a function of Otsu's threshold (Lemieux et al., 1999).
However, histogram features may not identify an appropriate
threshold. For example, choosing the first valley of the histogram
may result in a threshold that is too low (Fig. 6). In this example an
appropriate threshold is located in between the first valley and peak
of GM tissue distribution.

For T1W images, we found that a good threshold lies within 32–
40% of white matter (WM) intensity, i.e. 0.32IWM≤T≤0.4IWM and
chose T=0.36IWM for subsequent tests. “WM intensity” was estimat-
ed by averaging intensities within WM seed voxels, as explained in a
later section on seed selection.
econd column) leads to insufficient separation between brain and non-brain structures,



Fig. 7. Cutting narrow connections with graph cuts. After seeds are chosen, the algorithm searches for a partition with the smallest cut value that separates the seed regions.
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Removing narrow connections with graph cuts
In our approach, instead of ISO we used graph cuts (Boykov and

Jolly, 2001; Boykov et al., 2001), another graph theoretic segmenta-
tion approach, which uses a different minimization criterion and
optimization procedure. The reasons for not using ISO were mostly
technical- publicly available code, described in detail in Grady and
Schwartz (2006), scales poorly with image size, limiting its applica-
tion to 2D images. A more efficient solution based on tree
representation of sparse matrices (Grady, 2006) has not been made
publicly available yet. Another reason for using graph cuts approach is
its optimization procedure, which allows reaching a globally optimal
(vs. locally optimal in case of ISO) solution in a relatively short time
(linear or weakly polynomial in the number of voxels), and its
moderate memory requirements (Boykov and Kolmogorov, 2004).

Similar to ISO, the graph cuts approach treats the image as a
weighted undirected graph G=(V, E, W), where V, E and W are sets
of vertices, edges and edge weights respectively. But instead of
minimizing the ratio of the cut value |δS| and the volume of the
smaller partition element, it minimizes just the cut value, subject to
constraint that the partition must correctly separate pre-defined sets
of foreground and background seeds:

ŝ = arg inf
S

jδS j ; fpS; bpS ð2Þ

The graph cut algorithm can be applied to the removal of narrow
connection as follows. Given the initial mask (foreground F and
background B), we define the graph on the whole image (not just on F
as in ISO). The goal is then to choose appropriate seed regions and
edge weights, so that the desired cut has the minimum value of all
admissible cuts, i.e. cuts that separate the seed regions. For example,
assume that (S2,S ̄2) is the desired cut (Fig. 7). First, we need the
foreground and background seeds to be fully contained inside S2 and
B respectively, since the cut cannot be made through the seeds. To
make the value of the cut (S2,S ̄2) smaller than that of (S1,S ̄1) or any
Fig. 8. Selection of foreground seed is performed by finding the brightest and mo
other admissible cut, the weights of the edges surrounding S2 should
be made small while the weights of the edges surrounding other cuts
large. While this is not an easy task in general, in the ensuing sections
we will show how this selection can be achieved in the case of
separation of brain from non-brain tissues.

Seed selection
Initial thresholding results in a binary segmentation (F, B), where

the foreground region F is assumed to contain all brain as well as an
unknown number of non-brain tissue voxels. Hence we can set the
background seed to be equal to the background of the initial mask
(b=B). Choosing the foreground seed is more challenging, as there is
no a priori information concerningwhere actual brain tissue is located
within the initial mask.

In our implementation we used the fact that in a T1W MR image,
WM constitutes the largest region with uniformly high intensity. We
began by partitioning the image into cubes of size 5×5×5 voxels. We
then selected a cube that best fulfilled the combination of brightness
(high mean intensity) and uniformity (low variance of intensity
values). We found that this always resulted in a cube located inside
the WM, (Fig. 8).

We then obtained an estimate of the region bounded byWM using
region growing, initialized by the cube. Note that taking the cube
alone as the foreground seed could lead to a trivial solution containing
only this seed, as the number of edges surrounding the cube is small.
The stopping criterion for region growingwas conservative in that the
grown region would still be separated from non-brain structures by a
rim of GM and CSF, (Fig. 8).

Note that the described method of WM seed selection does not
require preliminary brain masking and can be performed directly on
the original image. In fact, WM seed selection was the first step in the
actual implementation of the proposed skull stripping approach. The
intensities of the voxels withinWM seed were subsequently averaged
to estimate the WM intensity, using the latter to determine initial
threshold (T=0.36IWM) and preliminary brain mask.
st uniform cube (middle), followed by conservative region growing (right).



Fig. 9. Original image (left column), graph cuts with weight assignment based on distance transform (middle), graph cuts with weight assignment based on distance transform and
intensity (right). First row is an image from data set 1, second row—from data set 2.

Fig. 10. Example of ground truth masks, top row—data sets 1 and 2 (IBSR), cerebellum included, bottom row—data sets 3 and 4 (Siemens Allegra 3T), cerebellum excluded.
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Table 1
Estimated CNR between GM and dura/CSF, and coefficient of variation within WM for
tested data sets.

Data set CNR mean (SD) [range] CV(WM) mean (SD) [range]

1 28.61 (11.70) [10.36 52.49] 0.10 (0.02) [0.06 0.13]
2 34.94 (12.15) [13.21 56.85] 0.13 (0.08) [0.08 0.33]
3 35.14 (6.0) [23.84 47.82] 0.09 (0.01) [0.08 0.11]
4 34.37 (6.98) [19.90 46.60] 0.09 (0.01) [0.07 0.10]
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Edge weight assignment
Recall that the weights of edges at the true boundary of the brain

should be small relative to edge weights elsewhere. This was achieved
by setting all the weights of the edges connecting foreground and
background of the initial mask to 1. All other edge weights are defined
as follows:

wi;j = max
viaF

D við Þ;D vj
� �� �

ð3Þ

where D(vi) and D(vj) are distance transform values at voxels vi and
vj. This assignment increases the weight of edges located deep within
the foreground region, making cuts here less likely. On the other hand,
weights inside the narrow connections remain small.

In the case of an occasional wide connection, this procedure fails
because of highdistance transformvalues inside the connection (Fig. 9,
middle column). A simple solution to this is to use the fact that
appropriate cuts between brain and non-brain structures usually go
through voxels of relatively lower intensity, e.g. partial volume voxels
between GM, CSF and dura. The weights of the edges that connect
these pixels should thus be reduced, to favor cutting through them.We
found the following assignment to work well (Fig. 9, right column):

w4
i;j = wi;j � exp k

min
viaF

I við Þ; I vj
� �� �

− T

IWM − T

0
BB@

1
CCA− 1

2
664

3
775 ð4Þ

where wi,j is given by (3), T is the threshold used to obtain the initial
mask and k is a parameter that controls the contribution of voxel
intensities. For T1W images, we obtained good results when 1≤k≤3
and chose k=2.3 for subsequent tests. The mean intensity of WM
(IWM) can be estimated by averaging intensities of the voxels inside
the foreground seed. The graph cuts algorithm code was obtained
from Boykov (Boykov and Kolmogorov, 2004).

Postprocessing
The initial thresholding procedure can inadvertently remove some

darker partial volume voxels at the GM/CSF boundary. To improve
results further, we applied a post-processing step to recover partial
volume voxels and CSF. This was accomplished by performing
morphological closing operation (10 mm voxel dilation and 10 mm
voxel erosion, sizes rounded to the nearest integer) on the final mask
and adding a layer of voxels at the cuts. This smoothes the mask and
fills in the ventricles (Fig. 5).

Results

Data sets

We used the following four data sets for performance evaluation:

(1) Data Set 1: 18 T1W volumes from the Internet Brain
Segmentation Repository (IBSR1), slice thickness 1.5 mm.

(2) Data Set 2: 20 T1W volumes of normal subjects from IBSR1, slice
thickness 3.1 mm.

(3) Data Set 3: 15 healthy subjects (age 56–71, 9 males), each
scanned once on a Siemens Allegra (Erlangen, Germany) 3T
scanner using the following parameters: TR=2300.00 ms,
TE=2.91 ms, TI=900 ms, FA=9 degrees, resolution 1×1×
1.1 mm.

(4) Data Set 4: 15 healthy subjects (age 56–71, 4 males), each
scanned once on a Siemens Allegra 3T scanner using the
following parameters: TR=2300.00 ms, TE=2.91 ms,
1 http://www.cma.mgh.harvard.edu/ibsr/.
TI=900 ms, FA=9 degrees, resolution 1×1×1.1 mm. In
contrast with data set 3, segmentation of images fromdata set 4
gave rise to a variety of problems, e.g. inclusion of dura with
GM, underestimation of WM surface, etc., which entailed
substantial manual editing. The purpose of including this data
set was to illustrate the potential benefit of the proposed
approach for the subsequent segmentation of brain tissues,
using FreeSurfer segmentation pipeline as an example.

For all four data sets, the ground truth was defined as GM+WM
(Hata et al., 2000; Lemieux et al., 1999; Stokking et al., 2000). Manual,
expert segmentation containing GM, WM and subcortical structures
(inclusive of cerebellum)was already included in the data sets 1 and 2
(Fig. 10, top row). To obtain ground truth for data sets 3 and 4, these
were processed using FreeSurfer 3.04 (Dale et al., 1999). The resultant
pial surfaces were edited by an expert and converted to volume
masks. Note that the ground truth for data sets 3 and 4 excluded
cerebellum (Fig. 10, bottom row).

To further highlight the differences between data sets, we
evaluated two image quality metrics, namely contrast-to-noise ratio
(CNR) between GM and dura/CSF and coefficient of variation (CV) of
WM (Table 1). To estimate CNR, we first defined dura/CSF region by
selecting 1-voxel thin layer external to GM. CNR was then defined as
the difference between median intensities of GM and dura/CSF
divided by the standard deviation of the noise, where the latter was
estimated from a manually selected ROI in the air space outside the
head. Images with dark CSF, good separation between GM and dura/
CSF and low noise have higher CNRs and should be easier to skull strip.
To estimate the CV ofWM,we divided the standard deviation of image
intensities within WM region (as defined by ground truth) by the
mean intensity within the same region. This metric is often used in
evaluation of nonuniformity correction algorithms as it is sensitive to
slow variations in image intensities. However, it is also sensitive to
noise and presence of imaging artifacts, sharp intensity variations,
ghosting, all of which may be detrimental to skull stripping.

According to Table 1, data set 2 on average has better delineation
between brain and non-brain structures and hence higher CNR,
compared to data set 1. However, its images exhibited a large variety
of imaging artifacts (strong intensity nonuniformity, ghosting), which
is reflected in 30% increase in CV(WM). Images from data set 3 and 4
had similar CNR to that of images in data set 2, but better uniformity.
Their quality was also much more consistent, which is reflected in
halving of the metric variability compared to data sets 1 and 2. Data
set 4 had slightly lower CNR compared to data set 3, possibly
explaining why it was more problematic.

Evaluation metrics

(1) Similarity coefficients. We used Jaccard similarity, defined as
JS = M\N

M[N, and Dice similarity, defined asDS = 2 jM\N j
jM j + jN j , where

M and N refer to segmentation and ground truth respectively
(Fennema-Notestine et al., 2006; Rehm et al., 2004; Segonne
et al., 2004; Shattuck et al., 2001).

(2) Segmentation error (false positives (FP) and false negatives
(FN)) (Hartley et al., 2006; Lee et al., 2003; Niessen et al., 1999;
Segonne et al., 2004). We used FP = jMnN j

jN j and FN = jNnM j
jN j .

http://www.cma.mgh.harvard.edu/ibsr/


Fig. 11. Skull stripping result 1, FP=27%, FP_adj=8% (left), skull stripping result 2, FP=31%, FP_adj=6% (right).
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One serious deficiency of these metrics in the setting of skull
stripping is that they may lead to unfair comparisons between
different approaches. This is because in addition to GM, WM and
subcortical structures that must be preserved in a valid brain mask,
there are also “optional” structures, e.g. brain stem and CSF, inclusion
or exclusion of which does not materially affect the quality of the
tissue segmentation that usually follows. If the ground truth contains
only GM andWM, as was the case for all our data sets, these “optional”
regions would contribute to artificial increase in FP rate and reduction
in similarity coefficients. Hence skull stripping that preserves less CSF
or cuts more of brain stem can be falsely declared superior to skull
stripping which does the opposite, even if the two approaches are
equivalent in terms of utility for subsequent processing or analysis.

Another problem that primarily affects existing formulation of FP
rate is its insensitivity to the types of preserved non-brain structures,
potentially making it a poor measure of subsequent segmentation
performance. For example, consider two qualitatively different skull-
stripping results in Fig. 11. The mask on the left contains large chunks
of skull and dura; their proximity to a large area of the brain surface
would likely to cause pial surface overgrowth. The mask on the right
preserves a large portion of orbital contents/skull that are located
further from the brain surface and are less likely to cause segmentation
problems, despite causing a higher FP rate (31% vs. 27%).

To provide results that are less affected by CSF voxels we followed
suggestions made by prior investigators (Boesen et al., 2004; Rex
et al., 2004; Shattuck et al., 2001) and included JS, DS and FP metrics
calculated without “dark” voxels, in addition to the traditional
metrics. The dark voxels were intended to be a coarse estimate
for CSF voxels and were classified as those voxels that had intens-
ity below 0.36IWM, the same threshold that was used to obtain



Table 2
Comparison of graph cuts skull stripping approach (GCUT) to cutting approaches based on morphological opening (MORPH) and distance transform followed by watershed
algorithm (DWAT), data set 1 (18 1.5 mm scans, IBSR).

Method DS (without dark pixels)
mean (SD) [range]

JS (without dark voxels)
Mean (SD) [range]

FN (%) mean
(SD) [range]

FP (without dark voxels, %)
mean (SD) [range]

FP_adj (%) mean
(SD) [range]

Initial mask 0.74⁎⁎ (0.07) [0.60–0.83] 0.59⁎⁎ (0.09) [0.42–0.71] 0.003⁎ (0.01) [0–0.04] 68.23⁎⁎ (21.93) [40.31–116.9] 9.40⁎⁎ (2.02) [6.67–14.29]
MORPH (size 5) 0.77⁎⁎ (0.09) [0.61–0.91] 0.64⁎⁎ (0.13) [0.44–0.84] 0.18 (0.54) [6.8e-05–2.28] 57.73⁎⁎ (27.17) [18.82–111.4] 7.76⁎⁎ (2.36) [3.32–13.61]
MORPH (size 11) 0.85⁎⁎ (0.09) [0.71–0.97] 0.75⁎⁎ (0.14) [0.55–0.95] 2.16⁎ (2.97) [0.04–9.75] 31.22⁎⁎ (20.05) [5.31–62.32] 4.80⁎⁎ (2.19) [1.78–9.40]
DWAT 0.60⁎⁎ (0.11) [0.34–0.79] 0.44⁎⁎ (0.11) [0.21–0.65] 40.87⁎⁎ (15.03) [0.05–70.17] 29.64⁎⁎ (12.59) [15.50–55.3] 6.91⁎⁎ (2.43) [2.19–10.52]
GCUT 0.95 (0.02) [0.93–0.97] 0.91 (0.03) [0.86–0.95] 0.03 (0.04) [0.0001–0.15] 7.09 (4.47) [1.50–15.8] 3.02 (2.05) [0.49–7.01]

Bold emphasis designates the best value among all rows.
⁎ 0.001bpb0.05, where p designates the statistical significance of the difference between current value and GCUT's result.
⁎⁎ pb0.001.

233S.A. Sadananthan et al. / NeuroImage 49 (2010) 225–239
preliminary mask, and did not belong to the ground truth. The new
metrics can be calculated using the same formulas as above, through
exclusion of dark voxels from segmented mask M. Note that FN rate
did not need to be recalculated because ground truth mask N did not
contain dark voxels by their definition. To reduce the influence of
brain stem and cerebellum (for data sets 3 and 4 only), and to
differentiate the skull/dura from other non-brain structures, we also
provided an “adjusted FP rate” that excluded from consideration non-
brain voxels located further than 5 mm external to the ground truth
boundary. As shown in Fig. 11, this newmetric is more sensitive to the
amount of preserved dura and neighboring skull, resulting in a lower
estimate for skull stripping result on the right.

The final experiment involved evaluating the effect of our skull
stripping approach on subsequent brain segmentation performed
using FreeSurfer 3.0.4 (Martinos Centre, Charlestown MA)2.

Experiment 1. Comparing graph cuts to other cutting techniques

The purpose of this experiment was to highlight the advantage of
using graph cuts over two alternatives, MORPH and DWAT. The same
initial mask and post-processing were applied to each approach. For
MORPH, we used our own implementation of dilation and erosion
functions in 3D using two cubic structuring elements of size
5×5×5 mm3 and 11×11×11 mm3, rounding the size to nearest
integer. For DWAT, we implemented 3D watershed algorithm as
described in (Hahn and Peitgen, 2000). The results (averaged over all
scans) pertaining to data set 1 are shown in Table 2.

Using the graph cuts based skull stripping pipeline (GCUT) as
shown in Fig. 5 resulted in a 10-fold decrease in FP rate and 3-fold
decrease in adjusted FP rate at the expense of an acceptable increase
in FN rate, compared with the initial mask. MORPH traded FN
performance for FP; selecting a small structuring element led to high
FP rates (not much change from the initial mask), while choosing a
large element resulted in substantial exclusion of brain tissue. Given
that the connections between brain and non-brain structures vary in
size, it is unlikely that an acceptable compromise can be found so as to
realize desirable FN and FP rates. DWAT performed a little worse, and
was associated with substantial brain loss, due to false valleys formed
inside the brain.

Experiment 2. Comparison with existing skull stripping approaches

In the second experiment we compared GCUT with BET, BSE, WAT,
and HWA on four chosen data sets, see results in Tables 3-6. A short
description of each of these algorithms was provided previously. BET,
WAT and HWA were used with default parameters. For BSE we
changed the default parameter values as suggested in (Hartley et al.,
2006) (diffusion constant=35, diffusion iterations=3, edge con-
stant=0.62, erosion size=2); this resulted in better performance
compared with default on four chosen data sets.
2 http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all.
Substantial disparity between similarity coefficients and FP rates of
data sets 1 and 2 compared to data sets 3 and 4 was due to ground
truth definition; the ground truth for data sets 1 and 2 contained
cerebellum whereas the ground truth for data sets 3 and 4 did not.
Since all tested approaches preserved cerebellum as part of the brain,
this led to higher FP rates and lower DS, JS for data sets 3 and 4. The
adjusted FP rate was affected to a lesser degree, as it only counted the
voxels within immediate vicinity of the brain surface.

Our performance evaluation of existing algorithms was consistent
with previous findings. BSE's reported FN rate ranged from 2 to 12%
(Boesen et al., 2004; Lee et al., 2003; Rex et al., 2004; Shattuck et al.,
2001), depending on whether the parameters were fixed for the whole
set or tuned for each individual volume (Boesen et al., 2004). The FN
rates for BET and WAT were reported to be 2.7–4.3% (Lee et al., 2003;
Rex et al., 2004) and 2% (Rex et al., 2004), respectively. Our findings fell
in the same range, except that BSE and WAT performed poorly on data
sets 2–4 in terms of FN rate. Our tests confirmed that HWA offers a
favorable trade-off between FN and FP rates, leading to negligible
(almost zero) brain loss at the expense of slightly higher FP rates
(Fennema-Notestine et al., 2006). This trend was violated only for data
set 2, where HWA resulted in substantial brain loss. Further investiga-
tion revealed that this poor performancewas due to five subjects in data
set 2 for which HWA either led to up to 50% brain loss or returned a
running error. After exclusion of these subjects (see the bottom of
Table 4), HWA's performance became consistentwith that onother data
sets. Note also that BET and BSE were similar to HWA in terms of
adjusted FP rate but 2–4 timesworse in termsof FP rates (data sets 3–4).
This suggests that HWA tends to preserve smaller non-brain structures
in the vicinity of the brain surface, e.g. skull and dura,while BET and BSE
preserve larger non-brain structures in the eye and neck areas.

Overall, compared to HWA, our approach led to substantial
decrease (10–30%) in adjusted FP rate, which was statistically
significant for data sets 1 and 3 (pb0.001). The FN rates of two
approaches were negligible; HWA did slightly better on data sets 1
and 3 while GCUT did better on data set 2 and 4. None of the
differences was statistically significant. Note that HWA and GCUT
performed similar to each other on data set 2, but only after excluding
5 subjects for HWA and one subject for GCUT. GCUT was superior
when all subjects in data set 2 were used for performance evaluation.

The results discussed here relate to images that were not corrected
for intensity nonuniformity. This said, intensity correction using N3
algorithm (Sled et al., 1998) with default parameters had little effect
on the subsequent skull stripping performance of our algorithm,
consistent with previous findings (Fennema-Notestine et al., 2006).
For example, there was no change for JS, DS and FN rate, and a slight
increase in adjusted FP rate from 2.95 (without N3 correction) to 3.2
(with N3 correction) for images in data set 3. For data set 4, correction
helped improve JS from 0.79 to 0.8 and DS from 0.88 to 0.89. The FN
rate was also slightly improved from 0.038 to 0.034, but at the
expense of a slight increase in FP adjusted rate (from 3.92 to 4.09).

Since both GCUT and HWA had very low FN rates, an obvious way
to further decrease the FP rate is by using the intersection of the two
masks; the results are shown in Tables 3–6 under the name

http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all


Table 3
Comparison of graph cuts skull stripping approach (GCUT) with existing skull stripping approaches, Brain Surface Extractor (BSE), Brain Extraction Tool (BET), Watershed Algorithm
(WAT), and Hybrid Watershed Algorithm (HWA), using data set 1 (18 1.5 mm scans, IBSR).

Method DS mean
(SD) [range]

JS mean
(SD) [range]

FP (%) mean
(SD) [range]

DS (without
dark pixels)
mean (SD) [range]

JS (without
dark voxels)
mean (SD) [range]

FP (without
dark voxels, %)
mean (SD) [range]

FN (%) mean
(SD) [range]

FP_adj (%) mean
(SD) [range]

BSE 0.91 (0.04)
[0.84–0.97]

0.84 (0.07)
[0.73–0.94]

12.1⁎⁎ (8.7)
[4.0–36.8]

0.92⁎ (0.04)
[0.84–0.98]

0.86⁎ (0.08)
[0.72–0.95]

7.9 (8.0)
[0.6–30.9]

5.87⁎ (7.82)
[0.44–22.41]

2.17⁎ (1.98)
[0.10–7.40]

BET 0.93 (0.04)
[0.79–0.96]

0.86 (0.06)
[0.65–0.92]

14.0⁎ (9.2)
[7.7–48.6]

0.94 (0.04)
[0.80–0.98]

0.89 (0.07)
[0.67–0.95]

8.1 (7.5)
[1.9–35.4]

1.93⁎ (2.25)
[0.11–6.73]

2.27⁎ (1.28)
[0.56–5.42]

WAT 0.91 (0.08)
[0.60–0.96]

0.85 (0.11)
[0.43–0.92]

18.8 (29.7)
[5.3–134.3]

0.94 (0.03)
[0.85–0.97]

0.89 (0.05)
[0.73–0.94]

7.4 (8.2)
[1.5–35.9]

2.45⁎⁎ (1.79)
[0.08–7.08]

2.50⁎ (2.08)
[0.61–8.94]

HWA 0.88⁎⁎ (0.03)
[0.82–0.91]

0.79⁎⁎ (0.04)
[0.69–0.83]

27.1⁎⁎ (6.8)
[20.0–44.4]

0.94⁎⁎ (0.02)
[0.90–0.96]

0.89⁎⁎ (0.03)
[0.82–0.93]

9.0⁎⁎ (5.4)
[2.9–22.4]

0.015 (0.02)
[0–0.07]

4.12⁎⁎ (2.27)
[1.25–8.90]

GCUT 0.91 (0.02)
[0.87–0.93]

0.84 (0.03)
[0.78–0.87]

19.3 (4.0)
[14.8–28.6]

0.95 (0.02)
[0.93–0.97]

0.91 (0.03)
[0.86–0.95]

7.1 (4.5)
[1.5–15.8]

0.029 (0.04)
[0–0.15]

3.02 (2.05)
[0.49–7.01]

GCUT_HWA 0.92⁎ (0.02)
[0.88–0.97]

0.85⁎⁎ (0.03)
[0.78–0.88]

18.0⁎⁎ (3.8)
[13.8–27.9]

0.95⁎ (0.01)
[0.93–0.97]

0.91⁎ (0.03)
[0.87–0.95]

6.4⁎ (4.3)
[1.4–15.4]

0.044⁎⁎(0.05)
[0–0.17]

2.72⁎ (1.97)
[0.46–6.94]

Bold emphasis designates the best value among all rows.
GCUT_HWA stands for mask obtained by intersecting GCUT and HWA mask.
⁎ 0.001bpb0.05, where p designates the statistical significance of the difference between current value and GCUT's result.
⁎⁎ pb0.001.
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GCUT_HWA. The intersection led to a small but tolerable increase in
FN rate and further 5–20% decrease in the adjusted FP rate.

Experiment 3. Effect on FreeSurfer segmentation pipeline performance

To evaluate the practical usefulness of GCUT to the subsequent
brain tissue segmentation, we applied it in the context of FreeSurfer
segmentation pipeline. In FreeSurfer, the pial surface localization is
limited to the brain mask obtained after the skull stripping procedure.
An imperfect skull strip can affect the resultant pial surface in two
ways. Inclusion of non-brain structures, such as dura matter, may
result in overestimation of the pial surface. The opposite problem,
brain loss inside themask, will logically lead to underestimation of the
pial surface. Given the ground truth, one way to assess the quality of
segmentation is to determine the distance between corresponding
points on the ground truth and test pial surfaces. However, we have
found this difficult to implement in practice. First, this does not
distinguish between underestimation and overestimation. Second, the
Table 4
Comparison of GCUT with existing skull stripping approaches using data set 2 (20 normal s

Method DS mean
(SD) [range]

JS mean
(SD) [range]

FP (%) mean
(SD) [range]

DS (without da
pixels) mean
(SD) [range]

BSE 0.79⁎ (0.21)
[0–0.95]

0.69 (0.22)
[0–0.90]

5.1⁎⁎ (3.1)
[2.1–13.0]

0.80⁎⁎ (0.22)
[0–0.95]

BET 0.74⁎ (0.14)
[0.53–0.90]

0.61⁎⁎ (0.18)
[0.36–0.81]

79.9⁎ (59.3)
[22.7–179.4]

0.80⁎⁎ (0.14)
[0.59–0.95]

WAT 0.76⁎ (0.14)
[0.47–0.92]

0.64⁎ (0.18)
[0.31–0.86]

18.4⁎ (14.1)
[5.2–61.2]

0.80⁎ (0.15)
[0.52–0.96]

HWA 0.78⁎ (0.21)
[0.16–0.88]

0.68⁎ (0.21)
[0.09–0.78]

131.2 (308.2)
[19.4–1060.2]

0.90 (0.13)
[0.51–0.97]

GCUT 0.85 (0.09)
[0.49–0.90]

0.75 (0.10)
[0.33–0.81]

38.3 (40.1)
[23.1–207.5]

0.93 (0.09)
[0.56–0.97]

GCUT_HWA 0.86 (0.09)
[0.49–0.90]

0.76 (0.11)
[0.33–0.82]

34.2⁎ (40.9)
[16.0–207.5]

0.92 (0.09)
[0.56–0.97]

Excluding 5 failed volumes for HWA and GCUT_HWA and 1 failed volum
BSE 0.84 (0.11)

[0.62–0.95]
0.73 (0.15)
[0.44–0.90]

4.7⁎⁎ (2.6)
[2.1–11.5]

0.84⁎⁎ (0.11)
[0.62–0.95]

HWA 0.86⁎⁎ (0.01)
[0.83–0.88]

0.75⁎⁎ (0.02)
[0.71–0.78]

32.6⁎⁎ (2.8)
[28.1–40.4]

0.95⁎ (0.01)
[0.92–0.97]

GCUT 0.87 (0.02)
[0.83–0.90]

0.77 (0.02)
[0.71–0.81]

29.4 (4.3)
[23.1–40.8]

0.94 (0.02)
[0.89–0.97]

GCUT_HWA 0.88⁎⁎ (0.01)
[0.86–0.90]

0.79⁎⁎ (0.02)
[0.75–0.82]

26.0⁎⁎ (3.0)
[21.2–32.6]

0.95⁎ (0.01)
[0.93–0.97]

Abbreviations are explained in Table 3′s caption.
Bold emphasis designates the best value among all rows.
⁎ 0.001bpb0.05, where p designates the statistical significance of the difference between
⁎⁎ pb0.001.
surface mesh used in FreeSurfer has varying distances between
vertices depending on the local surface complexity, making it difficult
to find unique pairs of matching vertices. To circumvent these
problems, we converted the pial surfaces into volume masks using
FreeSurfer's built-in function “mri_surfmask” and evaluated perfor-
mance in volume space.We also excluded from computation of FP and
FN a layer of voxels one voxel thick closest to the ground truth volume
boundary. This made computation more robust, as even small sub-
voxel changes in the surface position can lead to inclusion or exclusion
of an entire voxel. We also excluded a 10-mm-thick slab centered on
the midsagittal plane because FreeSurfer segmentation is known to
include dura at this location. The underestimation and overestimation
of the pial surfacewere then expressed using standard FN and FP rates.

Our experiment was performed as follows. We first visually exa-
mined the HWA segmentation results of data set 4, processing the left
and right hemispheres separately. We selected 15 hemispheres where
the pial surfacewas overestimated (later referred to as problematic) and
15where this did not occur (referred to as non-problematic). Finally, we
ubjects, IBSR).

rk JS (without dark
voxels) mean
(SD) [range]

FP (without dark
voxels, %) mean
(SD) [range]

FN (%) mean
(SD) [range]

FP_adj
(%) mean
(SD) [range]

0.70⁎⁎ (0.22)
[0–0.91]

4.0⁎ (3.1)
[1.5–12.7]

27.0⁎⁎ (24.1)
[3.5–100]

0.69⁎⁎ (0.78)
[0–3.12]

0.68⁎⁎ (0.18)
[0.42–0.91]

57.8⁎ (47.7)
[9.5–139.3]

0.1⁎⁎ (0.1)
[0.0–0.4]

6.42⁎⁎ (2.94)
[2.52–13.02]

0.70⁎ (0.19)
[0.35–0.92]

7.5 (4.2)
[3.4–17.0]

24.5⁎⁎ (22.7)
[0.1–62.7]

2.23⁎⁎ (1.70)
[0.68–6.31]

0.83 (0.17)
[0.35–0.94]

26.6 (49.9)
[4.8–188.8]

1.9 (6.5)
[0.0–28.9]

4.89 (3.82)
[1.15–16.31]

0.87 (0.12)
[0.39–0.94]

18.5 (32.5)
[5.0–155.3]

0.01 (0.02)
[0.0- 0.06]

4.29 (2.84)
[1.21–12.21]

0.87 (0.13)
[0.39–0.94]

16.7⁎ (32.8)
[4.5–155.3]

1.92 (6.53)
[0–28.88]

3.47⁎ (2.47)
[0.95–12.21]

e for GCUT and BSE
0.74⁎⁎ (0.15)
[0.45–0.91]

3.6⁎⁎ (2.4)
[1.5–9.7]

23.1⁎⁎ (17.3)
[3.51–54.53]

0.69⁎⁎ (0.78)
[0–3.12]

0.90⁎ (0.02)
[0.85–0.94]

10.8⁎ (3.4)
[4.8–16.9]

0.012 (0.04)
[0–0.17]

6.42⁎⁎ (2.94)
[2.52–13.02]

0.89 (0.03)
[0.81–0.94]

11.3 (4.5)
[5.0–23.2]

0.012 (0.02)
[0–0.058]

2.23⁎⁎ (1.70)
[0.68–6.31]

0.91⁎ (0.02)
[0.87–0.94]

9.7⁎ (3.3)
[4.5–15.4]

0.02 (0.05)
[0–0.20]

4.89 (3.82)
[1.15–16.31]

current value and GCUT's result.



Table 5
Comparison of GCUT with existing skull stripping approaches using data set 3 (Siemens Allegra 3T scanner, good quality).

Method DS mean
(SD) [range]

JS mean
(SD) [range]

FP (%) mean
(SD) [range]

DS (without dark
pixels) mean
(SD) [range]

JS (without dark
voxels) mean
(SD) [range]

FP (without dark
voxels, %) mean
(SD) [range]

FN (%) mean
(SD) [range]

FP_adj
(%) mean
(SD), [range]

BSE 0.63⁎ (0.24)
[0–0.89]

0.50⁎⁎ (0.24)
[0–0.81]

111.3⁎⁎ (75.6)
[20.4–200.5]

0.71⁎ (0.22)
[0–0.90]

0.58⁎⁎ (0.21)
[0–0.82]

54.0⁎⁎ (31.2)
[16.2–102.7]

9.54 (25.03)
[2.34–100]

3.45 (1.44)
[0.11–6.26]

BET 0.74⁎⁎ (0.10)
[0.57–0.85]

0.60⁎⁎ (0.13)
[0.40–0.74]

73.3⁎ (44.0)
[29.7–151.2]

0.77⁎⁎ (0.09)
[0.62–0.85]

0.63⁎⁎ (0.11)
[0.45–0.74]

51.2⁎⁎ (31.8)
[19.4–112.2]

1.75⁎⁎ (1.47)
[0.04–4.30]

5.50⁎⁎ (2.68)
[2.93–12.15]

WAT 0.82 (0.10)
[0.54–0.89]

0.71 (0.13)
[0.37–0.80]

21.8⁎⁎ (8.4)
[4.7–35.8]

0.83⁎ (0.11)
[0.53–0.89]

0.72⁎ (0.13)
[0.36–0.80]

14.9⁎ (5.5)
[2.4–22.6]

13.1⁎ (18.2)
[1.18–57.32]

2.63 (0.89)
[1.02–4.52]

HWA 0.84⁎⁎ (0.01)
[0.83–0.85]

0.72⁎⁎ (0.01)
[0.70–0.74]

38.2⁎⁎ (2.1)
[35.3–42.0]

0.88⁎⁎ (0.01)
[0.86–0.90]

0.79⁎⁎ (0.02)
[0.76–0.81]

18.2⁎⁎ (2.1)
[14.9–21.5]

0.013 (0.02)
[5e-4–0.05]

3.63⁎⁎ (0.54)
[2.86–4.40]

GCUT 0.86 (0.01)
[0.84–0.87]

0.75 (0.01)
[0.73–0.77]

32.8 (2.0)
[29.8–36.9]

0.89 (0.01)
[0.87–0.90]

0.80 (0.02)
[0.77–0.82]

17.2 (2.0)
[14.2–20.6]

0.025 (0.03)
[5e-4–0.14]

2.95 (0.42)
[2.22–3.55]

GCUT_HWA 0.86⁎⁎ (0.01)
[0.85–0.87]

0.76⁎⁎ (0.01)
[0.74–0.77]

31.8⁎⁎ (1.9)
[29.1–35.4]

0.89⁎⁎ (0.01)
[0.87–0.90]

0.80⁎⁎ (0.02)
[0.77–0.82]

16.9⁎⁎ (1.9)
[14.0–20.3]

0.035⁎ (0.04)
[0.006–0.16]

2.81⁎⁎ (0.37)
[2.16–3.33]

Abbreviations are explained in Table 3's caption.
Bold emphasis designates the best value among all rows.
⁎ 0.001bpb0.05, where p designates the statistical significance of the difference between current value and GCUT's result.
⁎⁎ pb0.001.
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compared FN and FP rates of three masks, HWA, GCUT and GCUT_HWA
across the two sets of hemispheres, see results in Tables 7 and 8.

Contrary to our expectations, GCUT brain mask performed poorly;
it led to a 2.5 fold increase in overestimation in problematic
hemispheres. However, the intersection of HWA and GCUT masks,
GCUT_HWA, performed very well, halving the FP rate of problematic
hemispheres. For non-problematic hemispheres, the intersection
mask did not change the FP rate (as expected) and also resulted in a
small decrease in FN rate. The reason for such a decrease is unclear; it
appears that the large FN rates reported in Tables 7 and 8 were not a
result of inappropriate masking but a result of residual intensity
nonuniformity that often causes pial surface underestimation on the
medial and inferior surfaces of the temporal lobe. The negligible
increase in FN rate after using GCUT_HWAmask suggests that the new
mask does not lead to greater brain loss than HWA and that used
alone, it is fine for non-problematic brains.

Visual examination of pial surfaces segmented with the help of
GCUT_HWA showed that overestimation problem was completely
resolved in 11 out of the 15 problematic hemispheres. Fig. 12 shows
several examples of successful use of GCUT_HWA.

Robustness and sensitivity to algorithm's parameters

In this work, robustness refers to the ability of the algorithm to
successfully process imageswhose appearance or quality substantially
Table 6
Comparison of GCUT with existing skull stripping approaches using data set 4 (Siemens All

Method DS mean
(SD) [range]

JS mean
(SD) [range]

FP (%) mean
(SD) [range]

DS (without da
pixels) mean
(SD) [range]

BSE 0.66⁎ (0.23)
[0–0.87]

0.52⁎⁎ (0.22)
[0–0.78]

98.9⁎⁎ (66.4)
[26.0–191.2]

0.72⁎ (0.22)
[0–0.89]

BET 0.75⁎⁎ (0.10)
[0.54–0.87]

0.60⁎⁎ (0.12)
[0.37–0.77]

70.7⁎ (42.3)
[24.4–168.6]

0.78⁎⁎ (0.08)
[0.6–0.88]

WAT 0.82 (0.09)
[0.57-0.91]

0.70 (0.11)
[0.40-0.83]

26.1⁎ (7.8)
[13.1–43.1]

0.83⁎ (0.09)
[0.57–0.91]

HWA 0.84⁎⁎ (0.02)
[0.80-0.85]

0.72⁎⁎ (0.02)
[0.67-0.75]

39.4⁎⁎ (4.6)
[33.8–50.1]

0.88 (0.01)
[0.85–0.90]

GCUT 0.86 (0.02)
[0.82–0.89]

0.75 (0.02)
[0.70–0.81]

33.6 (4.3)
[23.6–43.7]

0.88 (0.02)
[0.83–0.90]

GCUT_HWA 0.87⁎ (0.01)
[0.84–0.90]

0.76⁎ (0.02)
[0.73–0.81]

31.1⁎ (3.2)
[22.8–37.4]

0.89⁎ (0.01)
[0.86–0.90]

Abbreviations are explained in Table 3's caption.
Bold emphasis designates the best value among all rows.
⁎ 0.001bpb0.05, where p designates the statistical significance of the difference between
⁎⁎ pb0.001.
deviated from the norm.We applied our algorithm to examples of such
images. For example, data set 1 contained a number of images with
very poor contrast between gray matter and CSF. Images in data set 2
exhibited various imaging artifacts, such as strong intensity inhomo-
geneity and ghosting. Data set 4 was selected because it comprised
brains that had strong connections between dura and GM as well as
pronounced intensity inhomogeneity, characteristics that usually lead
to segmentation errors.

To highlight robustness of HWA compared to GCUT we calculated
the number of failures of each approach on the four data sets. “Failure”
was defined qualitatively as either gross brain loss or preservation of
majority of non-brain structures. Using this criterion, GCUT was more
robust than HWA; the failureswere observed only for data set 2, five for
HWA (substantial brain loss or running code errors) and one for GCUT
(preservation of almost all non-brain structures). GCUT's failure was on
subject “7_8” and was caused by erroneous choice of seed position,
inside the neck region rather than in WM. Usually, the neck region is
highly heterogeneous, which avoids this problem, but in this particular
subject it had a very homogeneous appearance. Interestingly, bothHWA
and BSE failed on the same subject, the latter due to wrong selection of
largest connected component (the neck instead of the brain).

Motivated by the cortical thickness estimation problem, we have
found it more informative to define failure quantitatively in terms of a
brain mask with either moderately high FN rate (FNN0.1%) or
moderately high adjusted FP rate (FP_adjN7%). Such masks are
egra 3T scanner, poor quality).

rk JS (without dark
voxels) mean
(SD) [range]

FP (without dark
voxels, %) mean
(SD) [range]

FN (%) mean
(SD) [range]

FP_adj (%)
mean (SD)
[range]

0.60⁎ (0.20)
[0–0.80]

52.9⁎⁎ (30.1)
[16.3–103.4]

8.59 (25.30)
[1.12–100]

5.10⁎ (2.14)
[0.03–9.24]

0.64⁎⁎ (0.10)
[0.44–0.79]

49.8⁎⁎ (28.7)
[16.3–116.2]

1.46⁎ (1.79)
[0.01–5.98]

6.21⁎ (2.62)
[2.79–11.87]

0.72⁎ (0.12)
[0.40–0.84]

17.0 (4.7)
[8.40–23.55]

12.22⁎ (14.9)
[0.29–49.25]

3.76 (1.35)
[1.55–6.15]

0.79 (0.02)
[0.75–0.82]

19.6 (2.6)
[13.3–23.2]

0.055 (0.07)
[0.0015–0.26]

4.28 (0.79)
[3.12–5.79]

0.79 (0.03)
[0.71–0.82]

18.7 (3.6)
[10.4–27.1]

0.038 (0.04)
[0.0010–0.13]

3.92 (1.40)
[1.80–8.02]

0.80⁎ (0.02)
[0.76–0.82]

17.4⁎ (2.5)
[10.2–20.2]

0.089⁎ (0.09)
[0.0025–0.38]

3.19⁎ (0.56)
[1.77–4.0]

current value and GCUT's result.



Table 7
Effect of brain masks on subsequent estimation of pial surface position in 15 hemispheres with prior overestimation problem.

FP (%) FN (%)

HWA GCUT GCUT_HWA GCUT_HWA –HWAa HWA GCUT GCUT_HWA

AVG 0.06 0.17 0.03 −0.03 0.12 0.15 0.13
STD 0.02 0.34 0.03 0.03 0.17 0.16 0.14
p-value b0.001

a This column designates the difference between the results in GCUT_HWA and HWA columns.
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often unsuitable for cortical thickness measurements. By this
definition, GCUT was more robust than HWA on data sets 1 (two
failures for GCUT vs. three for HWA) and 2 (two failures for GCUT vs.
six for HWA) but less robust on data set 3 (one failure for GCUT vs.
none for HWA). On data set 4 the two approaches were similar (two
failures each).

GCUT was found to be robust to the choice of parameters: the
intensity threshold T that is used to obtain preliminary mask and
parameter k that controls the contribution of voxel intensities in
deciding cut positions. This follows, first of all, from the fact that using
the same values (T=0.36IWM and k=2.3) resulted in excellent
performance across all four data sets. Further, changes in the
parameter values had limited influence on the overall performance
(Tables 9 and 10). Changing T led to reciprocal changes in FN and FP
rates—decreasing T led to reduction in FP rate and increase in FN rate
as more voxels were lost in the preliminary mask (Table 9). Smaller k
(higher influence of voxel intensities) led to lower FP rate but at the
expense of larger FN rate, due to increased chance of cutting within
the brain. Increasing k initially reduced but subsequently increased
the FN rate, as a result of wrongly positioned cuts that were no longer
guided by voxel intensities.
Table 8
Effect of brain masks on subsequent estimation of pial surface position in 15
hemispheres without prior overestimation problem.

FP (%) FN (%)

HWA GCUT GCUT_HWA HWA GCUT GCUT_HWA

AVG 0.02 0.02 0.02 0.47 0.42 0.31
STD 0.01 0.01 0.01 0.38 0.30 0.26
Discussion

Overall, in terms of similarity indices, FP and FN rates (both
conventional and modified), our method (GCUT) performed better
than all other approaches. GCUT was superior to BET according to all
metrics on all data sets except the first one, where BET achieved
somewhat better false positive rates and similarity indices at the
expense of almost 2% false negatives compared to almost zero for our
approach. Notably, the slight advantage of BET was observed with
only one data set out of four.

Similar statements can be made about BSE and WAT. BSE was
inferior to GCUT on data sets 3–4 according to all metrics, and
superior to GCUT in terms of false positives on data sets 1–2, at the
expense of unacceptable brain loss of 6–27%. WAT was consistently
superior to GCUT in terms of false positives, but again due to very
high FN rate of 2.5–24%. WAT's FN rate exceeded 12% on three data
sets out of four.

Our approach was superior to HWA on all data sets and metrics,
excluding FN rate, where the two approacheswere roughly equivalent
and achieved negligible brain loss much lower than that produced by
BET, BSE and WAT. On FP adjusted rate, which is most sensitive to
preserved dura, GCUT achieved 10–30% reduction compared to HWA.
Taking into account other factors as well as effect on the subsequent
surface estimation performance, the new skull stripping approach
GCUT offers a different balance of advantages and disadvantages
compared to HWA.

Advantages:

(1) Cleaner skull strip with less remaining dura (at least 10–30%
reduction).

(2) Better robustness of output using legacy data.
(3) Freedom from adependence on shape priors, suggesting
possible deployment of this method to developmental studies
on humans and for studies involving animal brains.

(4) No need for alignment to standard space, which may fail for
strongly misaligned brains.

Disadvantages:

(1) Trivial increase in brain loss for some data sets, which can still
be considered negligible for practical applications.

(2) Despite less dura preservation, subsequent segmentation can
be more problematic.

A caveat regarding the current study is that performance analyses
are based on data obtained from relatively healthy adults. Further work
is advisable to determine if the advantages outlined herewill generalize
to data from patient brains obtained in clinical settings where
movement, tissue abnormalities and artifacts could be problematic.

However, the main value of our approach is not its standalone
performance but rather its effect on subsequent segmentation when
used in conjunction with HWA. As illustrated in the third experiment,
the intersection of the two masks can completely solve the
overestimation problem (11 out of 15 problematic cases in our
study; Fig. 12). This effect can be attributed to GCUT's mask having
complimentary properties to that of HWA, as illustrated in Fig. 13.

HWA's main problem appears to be the double boundary between
scalp/skull/dura/GM structures, often resulting in inclusion of large
chunks of skull/dura mater that run parallel to brain surface. This
happens because image intensity information and smoothness (or
shape) constraints are combined in a single energy function (Segonne
et al., 2004). In the presence of double boundary, inclusionor exclusion
of skull/dura mater results in similar mask shapes and equally dark
boundary voxels, making it likely for the algorithm to choose the
wrongmask, (top two rows of middle column in Fig. 13). In GCUT, the
intensity information is used to create a preliminary mask after which
the shape constraints are imposed by performing cuts. As the dura
mater connectionswithGMare irregular in the preliminarymask, they
are likely to be cut, reducing the likelihood of dural inclusion (top two
rows of right column in Fig. 13).

On the other hand, HWA's ability to explicitly impose smoothness
and shape constraints results in more regular brain mask shapes,
which is particularly important when closely adherent skull/dura
shares the same signal intensity as GM and becomes inseparable from
GM (row 3 of Fig. 13). In such cases GCUT would make a wrong cut,
resulting in somewhat irregular mask shape. Intersecting the two
masks appears to resolve both problems and significantly decrease the
overestimation of the pial surface (Fig. 12).



Fig. 12. Problematic FreeSurfer segmentation performance using HWA brain mask (left) is improved using GCUT_HWA (right).

Table 9
Sensitivity of GCUT performance to intensity threshold parameter for k=2.3.

Data set T (% of IWM) 30 32 34 36 38 40

1 FN (%) 0.015 0.021 0.018 0.031 0.0389 0.0726
FP_adj (without
dark voxels, %)

5.22 4.57 3.73 2.94 2.37 1.81

2 FN (%) 0.004 0.006 0.010 0.012 0.015 0.02
FP_adj (without
dark voxels, %)

16.30 14.43 12.81 11.28 9.73 8.76
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It is likely that multispectral segmentation techniques made more
feasible by availability of fast 3D T2W imaging (Hennig et al., 2003)
will result in further improvement with respect to dura mater
removal. An alternative strategy is to use multiple echoes to create
intensity differences between dura adjacent to GM, particularly in the
medial temporal region (van der Kouwe et al., 2008). While this is
clearly promising, analyzing the vast amount of legacy data available
will still benefit from the technique we describe.
3 FN (%) 0.023 0.023 0.023 0.025 0.029 0.0369
FP_adj (without
dark voxels, %)

4.28 3.74 3.41 2.95 2.68 2.45

4 FN (%) 0.030 0.030 0.033 0.038 0.058 0.086
FP_adj (without
dark voxels, %)

6.04 5.15 4.47 3.92 3.49 3.09

Bold emphasis designates the best value among all rows.
Conclusion

We proposed a new skull stripping approach that builds upon
earlier work (Atkins and Mackiewich, 1998; Lemieux et al., 1999),



Table 10
Sensitivity of GCUT performance to parameter k controlling the influence of voxel
intensity on cut positions for T=0.36 IWM.

Data set K 1 1.5 2 2.3 2.5 3

1 FN (%) 0.129 0.086 0.041 0.029 0.023 0.085
FP_adj (without
dark voxels, %)

2.80 2.86 2.93 3.02 3.14 3.30

2 FN (%) 0.016 0.013 0.011 0.012 0.013 0.029
FP_adj (without
dark voxels, %)

3.39 3.37 3.60 3.87 3.91 3.81

3 FN (%) 0.034 0.027 0.025 0.025 0.023 0.019
FP_adj (without
dark voxels, %)

2.91 2.92 2.96 2.95 2.98 3.14

4 FN (%) 0.092 0.052 0.049 0.038 0.035 0.069
FP_adj (without
dark voxels, %)

3.64 3.78 3.91 3.92 4.01 4.30

Bold emphasis designates the best value among all rows.
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which used intensity thresholding followed by cutting of narrow
connections to obtain a brain mask. Our approach consists of three
steps: intensity thresholding, refining of the initial mask by cutting
Fig. 13. Typical errors exhibited by HWA (middle) and GCUT (right). HWA is often confused
skull/dura mater, rows 1–2. GCUT fails to cut connections where there is no noticeable inte
false connections between brain and non-brain structures, and post-
processing to recover CSF and partial volume voxels.

Instead of using mathematical morphology for false connection
removal (Atkins and Mackiewich, 1998; Lemieux et al., 1999), a
method that only cuts sufficiently narrow connections, our algorithm
uses a superior graph cuts approach that is capable of locating precise
cut positions of varying widths.

By itself, our approach offers a good alternative to HWA—it is more
robust on legacy data, can work on a larger variety of brain shapes and
achieves at least 10–30% reduction in residual dura without
significant increase in brain tissue removal. The greatest benefit of
using our approach is realized when it is employed in conjunction
with HWA, for example by using a simple intersection of the two
masks. The errors produced by the two masks are complementary,
resulting in significant improvement of subsequent segmentation
performance when the masks are combined. In our experiments, the
combined application of the two techniques resulted in the successful
segmentation of 11 out of 15 volumes that were not adequately
segmented using HWA alone.
by double boundary between scalp/dura/GM, resulting in inclusion of large chunks of
nsity separation between dura and GM, row 3.
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