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Preparatory patterns of neural activity predict visual category search speed
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Rapidly detecting target object categories when objects are embedded in naturalistic scenes is facilitated by
preparatory baseline signal changes. However, it is unclear as to what information most strongly predicts
perceptual speed in terms of the minimal exposure duration required for accurate detection. Using novel
surface-based spatiotemporal pattern classification, we found that while category-specific biases resulting
frommerely providing a category name can be detected in multiple cortical areas, only biases in lateral occip-
ital complex predicted perceptual speed. These biases likely carry visual semantic information regarding mul-
tiple object categories placed in familiar scene contexts. Discriminatory voxels during the preparatory period
showed congruent category-selectivity during visual stimulation.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The human visual system faces tremendous challenges when trying
tomake sense of the constant influx of complex sensory information. An
enduring question remains how we can often detect familiar objects
embedded in background scenes with sub-second speed and accuracy
(Intraub, 1981; Li et al., 2002; Potter and Faulconer, 1975; Potter and
Levy, 1969; Thorpe et al., 1996). Biasing the processing of sensory infor-
mation prior to target appearance is one enabling mechanism, but
details of how this might assist categorical target detection in natural
scenes continue to evolve (Wolfe et al., 2011).

Early experiments involving abstract visual stimuli revealed prepa-
ratory changes in baseline neural activity after one is oriented to search
at specified locations or for particular features (Chelazzi et al., 1998;
Giesbrecht et al., 2003; Hopfinger et al., 2000; Kastner et al., 1999;
Luck et al., 1997; Ress et al., 2000). Baseline signal changes bias sensory
processing in functionally specialized visual cortical areas by increasing
neuronal activation, and may enhance target detection or discrimina-
tion (Giesbrecht et al., 2006; Ress et al., 2000; Stokes et al., 2009;
Sylvester et al., 2009).

Subsequent studies involving natural objects such as houses/place
scenes and faces showed that orienting to isolated exemplars of these
categories results in dissociable baseline changes within specialized
face and place areas respectively (Esterman and Yantis, 2010; Puri et
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al., 2009; Reddy et al., 2010). Additional advances in our understanding
of the visual processing of objects involved extending studies of visual
search to other objects embedded in natural scenes. Such explorations
are crucial in light of behavioral studies that indicate differences between
natural scene searches and those involving abstract or isolated stimuli
typically used in experimental settings (Wolfe et al., 2011). In real life,
we search for diverse types of objects, but disambiguating imaging
signals for object categories that do not activate spatially distinct visual
areas, as is the case for faces and places, is problematicwith conventional
image analysis methods that examine signal changes at single-voxel
level.

Multi-voxel pattern analyses (MVPA) utilize differences in activation
magnitude between neighboring fMRI voxels to uncover informative
shifts in neural activity concealed from traditional univariate approaches
(Haynes and Rees, 2006; Kriegeskorte et al., 2006; Norman et al., 2006).
In addition to overcoming aforesaid limitations of conventional univari-
ate approaches to MR signal analysis, MVPA may be especially useful
when informative patterns do not significantly alter baseline MR signal
across a cortical patch (Bode and Haynes, 2009; Bode et al., 2012; Soon
et al., 2008). Recently, MVPA was used to distinguish preparatory
patterns between a pair of object categories (body parts versus cars)
embedded in natural scenes, despite their activating the same cortical
patch (Peelen and Kastner, 2011). Verifying that this remarkable finding
generalizes to the search for other object categories is of interest in
the present study. In particular, testing with four different categories
would strengthen the proposition that preparatory signal changes origi-
nate from the categorization of varied object categories as opposed to
being driven by responses to single category — more likely when only
a pair of object classes is tested.

To derive informative patterns attributable to different target cate-
gories, we applied surface-based MVPA to repeated pair-wise compari-
sons across four object categories, including two that do not have
distinct ventral visual cortex representations.
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Detecting a category when presented with only a verbal label as op-
posed to predefined exemplars (Cichy et al., 2012; Reddy et al., 2010)
requires broad prior knowledge of the visual characteristics of the cate-
gory and its associated contexts (Castelhano andHeaven, 2010). In con-
trast to keeping in mind a specific reference object, access to such an
abstract representation would be expected to involve higher visual
areas (Esterman and Yantis, 2010; Peelen and Kastner, 2011; Puri et
al., 2009) rather than early visual cortex (Kosslyn et al., 1999).

A recent seminal study suggested that more pronounced category-
specificity of preparatory patternswithin higher visual cortex improves
categorization speed and accuracy (Peelen and Kastner, 2011). An
intriguing complement to this finding would be to investigate whether
such preparatory patterns predict the stimulus exposure duration re-
quired for detecting familiar categories in natural scenes. Being able to
utilize themost discriminatory elements that differentiate visual object
classes would contribute to explaining why for some persons, exposure
as brief as 20 ms suffices for detecting a target category within a com-
plex scene (Thorpe et al., 1996). Crucially there is a distinction between
stimulus presentation time and processing time (Vanrullen, 2011), the
latter being reflected in reaction time (Peelen and Kastner, 2011).

Lastly, preparing to attend to a particular stimulus may resemble
actually viewing it (Cichy et al., 2012; Driver and Frith, 2000; Reddy
et al., 2010). For isolated objects and well-defined exemplars, pat-
terns during visualization and perception have been remarkably con-
gruent (Cichy et al., 2012; Reddy et al., 2010). We thus determined
whether the most category selective voxels during the preparatory
period would continue to show congruent category-specificity during
the stimulus-evoked phase of the experiment.

Materials and methods

Participants

21 healthy right-handed participants (mean age 20.8, range
19–24 years; 9 males) gave informed consent prior to undergoing
brain imaging with fMRI. Six participants were excluded from analyses
due to excessive sudden headmotion (see Supplementary Methods for
details).

Experimental stimuli

In the MR scanner, a cued category detection task was performed.
For each of four possible target categories, ‘House’, ‘Face’, ‘Car’ or ‘Bird’,
304 complex colored images were obtained from publically available
sources (see Supplementary Fig. 1). Each image depicted an object
from the specific category as the main subject. This object was embed-
ded in a complex natural scene that did not contain any object from the
other three categories (each ‘House’ image contained the complete
external view of a building). All images were randomly assigned to
training and experimental trials for each participant. Each object or
image was used only once across trials to avoid learning or repetition
effects.

Visual stimuli were back-projected (Epson EMP1715, 800×600
pixels, 60 Hz) onto a screen at the rear of the scanner bore. Participants
responded with two custom-made button boxes, one in each hand.
Auditory stimuli were presented through a MR-compatible headset
(Siemens, Erlangen, Germany).

Experimental task

Participantsmaintained fixation on a cross in the center of the display
throughout the experiment. At the beginning of every trial, an auditory
cue, ‘House’, ‘Face’, ‘Car’ or ‘Bird’, specified the target object category
(Fig. 1). 6000 ms after the auditory cue onset, four images were
presented, one from each category. Each display quadrant contained a
randomly assigned image (280×210 pixels; visual angle: closest corner,
3°, furthest corner, 24°). Each quartet of natural scene imageswas shown
for between 16.7 ms and 183.3 ms. Exposure duration was titrated for
each participant such that performance accuracy was approximately
85% (see below). The image quartets were immediately followed by 3
different sets of identically configured masks comprising scrambled im-
ages, each appearing for 250 ms.

At the same time that the natural scene quartet was presented, the
white fixation cross was replaced by a blue fixation cross for 2350 ms.
The participant then indicated the location of the image containing
the target category by pressing one of four buttons corresponding to
quadrants the target image was located. A variable fixation period
followed, such that trial onsets were separated by 16–20 s to mini-
mize overlap in the hemodynamic response.

Study protocol

Participants underwent 4 training runs before performing 10 ex-
perimental fMRI runs. Each run consisted of 16 trials, 4 from each tar-
get category. The first 2 training runs were conducted outside the
scanner using a liquid crystal display monitor (800×600 pixels,
60 Hz) to ensure that participants understood and could perform
the task. The last 2 training runs were conducted inside the scanner
to ensure that the participants could perform the task under identical
visual stimulation conditions as the actual fMRI experiment.

The duration of each image quartet was titrated such that each
participant achieved target identification accuracy of approximately
85%. In the first training run, the quartets appeared for 100 ms
(6 frames). At the end of each run (including training runs), if the
participantwas able to identify the image containing the target category
with >90% accuracy, the stimulus exposure duration was reduced by 1
frame (16.7 ms) for the next run. If accuracy was b80%, the exposure
duration was increased by 1 frame for the next run. Otherwise, expo-
sure duration was kept the same. Based on this procedure, exposure
duration provided an indicator of each participant's perceptual speed
for target category detection that was not affected by differences in
motor response speed.

Imaging acquisition

MR images were acquired on a 3-Tesla Tim Trio system (Siemens,
Erlangen, Germany). Ten runs comprising 155 functional MRI volumes
each were acquired for each participant using a gradient echo-planar
imaging (EPI) sequence with the following parameters: repetition
time (TR) 2000 ms; echo time 30 ms; flip angle 90 degrees; field of
view 180×180 mm; 72×72 pixel matrix per slice; 2.5×2.5 mm
in-plane resolution; 36 oblique axial slices; slice thickness 2.50 mm;
inter-slice gap 0.25 mm. In order to reconstruct the cortical surface
for surface-based MVPA, a high-resolution T1-weighted anatomical
volume with 1 mm isotropic voxels was also obtained using a 3D-
MPRAGE sequence.

General linear model

All functional images were realigned to the first image of the first
functional run using rigid-body transformation (SPM2, http://www.
fil.ion.ucl.ac.uk/spm). No further smoothing or spatial normalization
was performed on the functional data in order to maximally preserve
the fine-grained activation patterns.

The first two images in each run were discarded to allow for
magnetic saturation effects. A voxel-wise general linear model (GLM)
was then created to capture signal variance that was common across
all conditions. All correct trials from the four target categories were
modeled together using a set of 11 finite impulse response (FIR) predic-
tors, covering 22 s from cue onset. Error trials were modeled using a
separate set of 11 FIR predictors. Motion correction parameters and
their first-order derivatives were included as covariates.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Fig. 1. Schematic of target category detection task. At the beginning of each trial, an auditory word cue specified the target category: ‘House’, ‘Face’, ‘Car’ or ‘Bird’. 6000 ms later, four
natural scene images were briefly presented before being masked by scrambled images. Participants identified the image containing the target category. The duration images were
shown was individually calibrated to achieve correct detection of around 85%.
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Critically, the residuals from this model can be expected to contain
information regarding differences in activation across the four different
target conditions. For each trial, the corresponding GLM residuals
(0 to 22 s from trial onset) were extracted using trial-by-trial surface
searchlight classification.

Defining standardized surface searchlights

MVPA using a ‘searchlight’ approach can detect information encoded
in local spatial activation patterns in a sensitive and unbiased manner
(Haynes et al., 2007; Kriegeskorte et al., 2006; Soon et al., 2008). Using
searchlights defined along the cortical surface further improves the
anatomical specificity of the resultant information map compared to
Fig. 2. Cortical activity during the preparatory period, prior to visual stimulation. a) Centers
could be decoded with above chance accuracy from local activation patterns in various region
changes in BOLD signal magnitude during the preparatory period, averaged across all categ
volume-based searchlights (Chen et al., 2011). Here, we developed a
novel standardized cortical searchlight approach, whereby each search-
light captured a patch of cortex anatomicallymatched across participants
(Fig. 2). This allowedus to directly assesswhether the activation patterns
within the searchlight captured functionally relevant information consis-
tently across different individuals (even though the actual patterns may
differ across individuals). This highly sensitive method allowed us to
identify cortical regions that encoded the target category before and
after visual stimulation. The details of this approach are described below.

For each participant, the cortical surface (gray-white boundary)
was reconstructed from the high resolution T1 image. The mesh of
each hemisphere was then inflated into a sphere of 100 mm radius
and normalized to a standard template (‘fsaverage’) based on cortical
of searchlights encoding the target category. Once the target category was specified, it
s (pb .05, Bonferroni corrected; 25 mm2 cluster threshold). b) Cortical regions showing
ories (pb .001, uncorrected; 25 mm2 cluster threshold).

image of Fig.�2
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folding patterns (FreeSurfer, http://surfer.nmr.mgh.harvard.edu). Next,
the functional voxels corresponding to the gray matter surface were
identified as follows: a surface in the middle of the gray matter
(“graymid”) was created by inflating the gray-white boundary surface
by 50% towards the pial surface (Chen et al., 2011). This graymid surface
was then coregistered to the first image of the first functional run. For
each vertex on the graymid surface, the corresponding EPI voxel
containing the vertex was indexed. FreeSurfer maintains a one-to-one
correspondence of vertices when morphing the original gray-white
boundary mesh into the graymid and normalized spherical meshes.
This facilitates the identification of the corresponding graymid vertex
and EPI voxel for a given vertex on the normalized spherical mesh.

There are two typical approaches to normalize individual participant
data to a standard template space for group-level comparisons: 1) nor-
malizing the original EPI images before performing MVPA, and 2) nor-
malizing the resultant accuracy maps after performing MVPA. The
problem with the first approach is that interpolation during image
reslicingmay reduce information-rich differences between neighboring
voxels beforeMVPA. The second approach avoids this problem. Howev-
er, while classification accuracy is usually assigned to the central voxel
or vertex of the searchlight (but see Bjornsdotter et al., 2011), the infor-
mation is actually encoded within the spatial activation patterns of the
whole searchlight, not just the central voxel or vertex. Given individual
differences in anatomy, the classification accuracy in a given voxel or
vertex may not arise from the identical patch of cortex across different
participants if the normalization were to be performed after MVPA.

To circumvent these issues, we developed a new approach utiliz-
ing standardized searchlights that captured anatomically matched
cortical patches across different individuals, without having to spa-
tially normalize the functional data itself. We first selected a refer-
ence structural dataset, ‘fsaverage6’ (ftp://surfer.nmr.mgh.harvard.
edu/pub/data/fsaverages.tgz), which is a downsampled version of
‘fsaverage’, with ~40 K vertices instead of ~160 K vertices per hemi-
sphere. This was more than sufficient given that there are ~15 K gray
matter voxels per hemisphere at the EPI image resolution used here.
For each vertex on the normalized spherical mesh of this reference
dataset, a circular searchlight centered on the vertex was defined
(geodesic radius 20 mm). Each searchlight was then ‘projected’ onto
every participant's normalized spherical mesh, using a nearest-
neighbor approach. This analysis was performed separately for each
hemisphere. Since the spherical meshes of all participants and the
reference dataset were normalized to the same template for each
hemisphere, each searchlight effectively captured anatomically matched
cortical patches across participants. The EPI voxels that corresponded to
the vertices within the searchlight were then identified as described
above, and the functional data extracted for MVPA.

The meshes of each hemisphere contained white matter vertices
due to the cut through the medial wall connecting both hemispheres,
and searchlights centered on such vertices were excluded, leaving
~35 k searchlights for each hemisphere.

Surface searchlight MVPA

For each searchlight, support vectormachines (SVM; LIBSVM imple-
mentation, http://www.csie.ntu.edu.tw/~cjlin/libsvm) were used to as-
sess whether the target category was encoded in the spatiotemporal
pattern of activation during the preparatory period. First, spatiotempo-
ral vectors were created for each correct trial by concatenating the GLM
residuals from all voxels within the searchlight, and the 4 timepoints
from 0 to 8 s after cue onset (Mourao-Miranda et al., 2007). The visual
stimulus was presented at 6 s, but given the delay in the hemodynamic
response, visual-evoked BOLD changes were not expected until after
8 s. To avoid biasing against any given condition, an identical number
of trials were selected for each of the 4 target category conditions
(‘House’, ‘Face’, ‘Car’ and ‘Bird’) by excluding the last few trials from
conditions with more correct trials. Next, SVM classifiers were trained
to distinguish the spatiotemporal patterns of activation between pairs
of conditions (‘House’ vs ‘Face’, ‘House’ vs ‘Car’, ‘House’ vs ‘Bird’, etc.;
chance level 50%). Trials from each condition were divided into 5 sepa-
rate sets. Four trial sets were combined to train an SVM model, which
was then tested using the independent 5th trial set. This training and
testing cycle was repeated 5 times (5-fold cross-validation), such that
each trial was tested once. The classification accuracy averaged across
all 6 pair-wise classifications and 5-fold cross validation (~360 classifi-
cation tests for each participant)was then assigned to the central vertex
of the searchlight on the downsampled referencemesh. For each partic-
ipant, this process was repeated independently for each searchlight to
create a map of classification accuracies for the whole cortex.

The accuracy map for each participant then underwent heat kernel
smoothing (Chung et al., 2005). Next, a stringent approachwas adopted
to evaluate whether the classification accuracies for a searchlight were
significant at the group level. For each participant and searchlight, con-
sidering each of 360 classification tests as a Bernoulli trial with 50%
probability of success, amean accuracy value≥55%would be significant
(Pereira et al., 2009). Hence, for each searchlight, we performed a
group-level t-test of classification accuracy against 55% (instead of
50%). A significant result (pb .05, Bonferroni corrected) would imply
that the spatiotemporal activation patterns within a searchlight con-
tained information about the target category. We postulated that
category-specific biases in activation would be evidenced in higher
order visual areas in the preparatory period prior to target exposure.

To establish the behavioral relevance of such preparatory biases, we
correlated themean searchlight classification accuracy (averaged across
all 6 pair-wise classifications) with the stimulus exposure duration for
that individual. We expected a functionally relevant region to show a
significant negative correlation. To correct for multiple comparisons,
permutation testing (1000 Monte Carlo simulations) implemented in
BrainVoyager QX version 2.12 (Brain Innovation) was used to estimate
the cluster-size threshold corresponding to a global error probability of
pb .05 (single-vertex threshold: rb−0.64, pb .005, one-tailed) (Forman
et al., 1995; Hayasaka and Nichols, 2003; Nichols and Holmes, 2002).

Additional classification analyses were conducted to locate areas
that encoded the target category after the natural scene quartets
were shown (4 timepoints from 10 to 16 s after cue onset). Control
analyses were also conducted to ensure that our classification proce-
dures were not prone to false positives (see Supplementary Fig. 4).

Results

At the criterion level of target detection accuracy (mean=84.8%,
S.E.=0.01%, Supplementary Table 1), exposure duration ranged from
53 to 182 ms across the 15 participants whose imaging data contribut-
ed to the analyses (mean=105 ms, median=95 ms). This provided
the critical measure of perceptual speed.

Following the auditory word cue, patterns in several cortical re-
gions became informative of the cued target category (Fig. 2 and
Table 1; Supplementary Tables 2 to 4 and Supplementary Movie 1
contain results for stimulus-evoked periods and univariate GLM).
These included the left superior temporal gyrus and supramarginal
gyrus, reflecting perceptual processing of the auditory cue. Medial
and lateral frontal patterns could be involved in establishing task
goals and voluntary control of attention. Category-specific biases in
visual cortices were also evident in early visual cortex as well as
higher visual cortex — parahippocampal gyrus and the lateral occipi-
tal complex (LOC).

In accordance with the hypothesis that preparatory biases facili-
tate target detection, we predicted that individuals with stronger
biases would require shorter stimulus exposure time to detect tar-
gets. The strength of preparatory biases was indexed by classification
accuracies averaged across all four categories.

The only cortical region that showed such a correlationwas an ante-
rior lateral portion of the right LOC, stretching from occipito-temporal

http://surfer.nmr.mgh.harvard.edu
ftp://surfer.nmr.mgh.harvard.edu/pub/data/fsaverages.tgz
ftp://surfer.nmr.mgh.harvard.edu/pub/data/fsaverages.tgz
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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sulcus to inferior temporal sulcus (MNI coordinates: 55,−56,−4; peak
r=−0.91; cluster-size corrected pb .005; Figs. 3a and b). No significant
positive correlations were found.

To ensure that this finding was not spurious (Vul et al., 2009), we
repeated the whole classification analyses four times with different
randomization of trials for classifier training and testing (see Supple-
mentary Fig. 2). In all analyses the right LOC area was the only cortical
region showing significant negative correlations, with peak values of
rb−0.85.

Similar correlation analyses were performed for the classification
accuracies of each individual category (averaged across 3 pair-wise
classifications involving the specific category) and category-pair. Signif-
icant negative correlationswith calibrated exposure durationwere seen
in right anterior LOC for ‘House’ (peak r=−0.84; cluster-size corrected
pb .05), ‘Face’ (peak r=−0.89; cluster-size corrected pb .05), and ‘Bird’
(peak r=−0.83; cluster-size corrected pb .01; Fig. 3c). A cluster of ver-
tices within right anterior LOC also showed strong negative correlations
for ‘Car’ (peak r=−0.85), but did not survive cluster-size correction
(p>.05). Similarly, although there were small clusters in right anterior
LOC with negative correlations (rb−0.64) for all category-pairs except
‘House’ vs ‘Car’, none survived cluster-size correction (Supplementary
Fig. 3). No other significant regions were found across all correlation
analyses.

Next, we determined whether category selectivity would be pre-
served between preparatory and stimulus-evoked periods at the voxel
level. From a separate GLM (similar to that described above, but with
a separate set of FIR predictors for each category), parameter estimates
Table 1
Cortical regions showing category-specific activity during the preparatory period
(pb .05, Bonferroni corrected; 25 mm2 cluster threshold on cortical surface).

MNI Classification

Cortical region Hemisphere BA X Y Z Accuracy (%)

Visual
Calcarine L 17 −5 −81 −3 63.1
Calcarine R 17 8 −71 20 63.2
Lingual gyrus R 17 9 −61 −2 63.4
Middle occipital gyrus R 17 30 −87 0 63.6
Superior occipital gyrus L 18 −29 −93 14 65.1
Superior occipital gyrus L 19 −22 −83 16 63.6
Superior occipital gyrus R 19 25 −81 36 63.3
Lateral occipital sulcus L 19 −39 −79 11 64.2
Lateral parieto-occipital
sulcus

L 19 −12 −77 47 63.3

Inferior occipital gyrus R 18 27 −89 −12 61.6
Collateral sulcus R 19 23 −52 −9 63.2
Inferior occipital gyrus R 18 44 −77 −6 62.3
Posterior middle
temporal gyrus

R 19 58 −57 7 62.9

Frontal
Precentral gyrus L 6 −47 5 16 63.4
Precentral gyrus L 4 −35 −22 65 61.6
Middle frontal gyrus L 9 −40 17 32 63.8
Middle frontal gyrus R 9 40 15 54 63.6
Lateral frontopolar L 45/

46
−30 49 6 64.1

Lateral frontopolar R 45/
46

53 33 −4 64.3

Superior frontal gyrus R 10 23 55 24 65.6
Medial superior frontal
gyrus

L 6 −5 −3 52 61.5

Medial superior frontal
gyrus

R 6/8 6 22 52 64.8

Rostromedial prefrontal
cortex

L 11 −12 45 −7 63.3

Parietal
Intraparietal sulcus L 7 −18 −67 45 63.8
Precuneus R 31 8 −70 34 62.0
Auditory
Superior temporal gyrus L 22 −63 −12 −2 64.2
Supramarginal gyrus R 39 63 −41 24 63.1
were obtained for the preparatory period (averaged across 3 timepoints
covering 2 to 8 s after auditory cue onset) and stimulus-evoked period
(averaged across 3 timepoints covering 2 to 8 s after visual stimulus
onset). For each category the 10 most positively selective (i.e., higher
BOLD signal than the mean of other categories) and 10 most negatively
selective voxels (i.e., lower BOLD signal than the mean of other catego-
ries) during the preparatory period were identified from the right
anterior LOC for each participant. The mean category selectivity of
these voxels was preserved in the stimulus-evoked period (positively
selective voxels: t14=7.10, pb10−5; negatively selective voxels:
t14=−7.90, pb10−6, one-tailed tests). The results from a representa-
tive participant are shown in Fig. 4.

Discussion

Weobserved category discriminant BOLD signal patterns inmultiple
cortical areas as participants prepared to locate targets belonging to
four familiar object categories. While these baseline patterns were in-
formative regarding the target category, only biases within the anterior
LOC predicted howmuch exposure time one needed to identify the tar-
get object category. Informative voxels in LOC preparatory patterns,
both positively and negatively selective for a target category, continued
to show the same category selectivity when viewing target objects.

Functional relevance of preparatory activity

The magnitude of preparatory shifts in BOLD signal in visual cor-
tex has been shown to predict behavioral performance in several
studies (Giesbrecht et al., 2006; Peelen and Kastner, 2011; Puri et
al., 2009; Ress et al., 2000). However, this association is not obligatory
(Fannon, 2008). The loci and conditions under which preparatory ac-
tivity are predictive of behavior remain to be clarified. For example,
elevated activity can reflect non-target related information such as
temporal expectation (Esterman and Yantis, 2010), task difficulty
(Ress et al., 2000) or spatial location (McMains et al., 2007) that
may not materially contribute to behavioral performance.

Here, whole brain searchlights were used to evaluate preparatory
patterns prior to focusing on specific visual cortical regions (Peelen
and Kastner, 2011; Peelen et al., 2009; Reddy et al., 2010). Addition-
ally, using four different categories allowed us to verify that our re-
sults were representative of familiar object categories in general
(Fig. 3c and Supplementary Fig. 3), as opposed to being driven by a
single category — more likely when only comparing a pair of catego-
ries. Of the various correlation analyses conducted, themean accuracy
across all 6 pair-wise classifications was most predictive of the mini-
mal exposure duration required for correct target identification.
While the correlation results of individual categories and category-
pairs were not completely equivalent, none of them was more robust
than the mean accuracy results, both in terms of peak correlation and
spatial extent. In other words, the mean accuracy correlation results
could not be fully explained by any single category or category-pair.
These findings are indicative that preparatory activity in anterior
LOC can facilitate detection for various familiar categories.

Discriminatory patterns and their relevance to perceptual speed

Within ventral visual areas, category-specific biases that differen-
tiated the target category from three other categories but did not
correlate with perceptual speed were detected in early visual areas,
posterior portions of LOC, and parahippocampal gyrus.

Early visual cortex has been implicated in the visualization of sim-
ple and complex objects (Cui et al., 2007; Kosslyn et al., 1995; Kosslyn
et al., 1999). Baseline shifts have even been correlated with the sub-
jective vividness of mental images (Cui et al., 2007). However, other
studies have not shown baseline changes in early visual cortex signal
(D'Esposito et al., 1997; Formisano et al., 2002). Critically, while valid



Fig. 3. Significant correlation between preparatory category-specific biases and behavioral performance. a) Cortical map depicting searchlights inwhich classification accuracy (averaged
across all categories) showed significant correlation with individually calibrated stimulus duration (yellow: center of searchlights with Pearson's rb−0.64; cluster-size corrected pb .05;
pink mesh: full extent of significant searchlights). b) Correlation of classification accuracy (averaged across all categories) and stimulus duration, from peak searchlight shown in Fig. 3a.
Participants showing stronger category-specific preparatory biases in right anterior LOC required shorter exposure to a stimulus to locate the target category. c) When the classification
accuracies were considered separately for each of the 4 categories, significant correlations with stimulus duration could still be found in right anterior LOC for ‘House’, ‘Face’ and ‘Bird’
(rb−0.64; cluster-size corrected pb .05; a suprathreshold cluster for ‘Car’ did not survive cluster size correction). The cortical surface has been inflated in the inset tomore clearly illustrate
the overlap between the different categories (pink mesh: full extent of significant searchlights from Fig. 3a).
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expectations may facilitate the detection of complex objects, invalid ex-
pectations could hinder performance (Puri and Wojciulik, 2008). As
such, expectation related neural activity related to the visualization of
exemplars in early visual cortex (Kosslyn et al., 1999)mayhinder speed-
ed detection of target objects specified only by category (Peelen and
Kastner, 2011). This could be compounded if objects are embedded in
unspecified scenes (Peelen and Kastner, 2011). Hence, changes in early
visual cortex neural activitymay contribute to the expectation of a visual
target but not correlate with recognition speed, perhaps reflecting the
occasional use of visualization to focus attention on the target category.
Fig. 4. Voxel-level category selectivity for a representative participant. a) For each category, th
negatively selective (i.e., lower magnitude than other categories) voxels in the right anterior LO
voxels from 4a continued to show the same direction of category selectivity after visual stimu
While the parahippocampal area is best known for sensitivity to
houses and place scenes, it also appears to provide contextual informa-
tion regarding the how an object relates to its spatial context (Bar et al.,
2008). It follows that this area may also generate informative patterns
during scene-based target searches (Peelen and Kastner, 2011; Peelen
et al., 2009).

Of the higher visual areas, only discriminatory voxels in the ante-
rior LOC predicted perceptual speed. It would not be advantageous for
participants to visualize target objects as only a category label was
provided and no object was presented more than once (Peelen and
e 10 most positively selective (i.e., greater magnitude than other categories) and 10 most
C during the preparatory period are shown on an inflated cortical surface. b) Most of the

lation.

image of Fig.�3
image of Fig.�4
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Kastner, 2011). Participants also did not know which quadrant to ex-
pect the target. Attention to other low-level features like orientation
and color would not have been helpful as these were varied across
different pictures. Collectively, these points suggest that the prepara-
tory LOC patterns uncovered here denote visual characteristics that
generalize across members of a category.

Recently, preparatory activity in the anterior LOC was found to
correlate with accuracy and response time when participants had to
determinewhether an image contained an object froma target category
(Peelen andKastner, 2011). Here, we add to this finding by demonstrat-
ing that more distinct preparatory patterns in anterior LOC reduced the
exposure duration needed for target detection. Hence, anterior LOC
preparatory activity can modulate perceptual speed for visual search
both in terms of the minimum stimulus exposure time and overall
perceptual processing time required.

Stimulus presentation times affect the quantity of sensory informa-
tion available to the earliest levels of visual representation (Vanrullen,
2011). Thus, our findings suggest that preparatory activity in the
anterior LOC may modulate the sensory information needed for suc-
cessful target categorization. For example, being able to anticipate sa-
lient visual characteristics specific to one category may hasten target
detection. This may partly account for the findings in Peelen and
Kastner's (2011) study in which stimulus presentation times were
equated across participants (100 ms).

It is remarkable that searching for a target category from four
complex natural scenes compared to one central scene (in Peelen
and Kastner, 2011), across wider visual angles (24° vs 10°), did not
lead to poorer detection accuracy (85% vs 82%) when mean stimulus
exposure times were comparable (105 ms vs 100 ms). This reinforces
the idea that category-specific biasing mechanisms in object-selective
cortex can operate in parallel across the visual field (Peelen et al.,
2009), even during the preparatory phase. However, there did appear
to be additional processing costs when comparing the response times
(~1000 ms vs ~700 ms).

The occipito-temporal area identified here (which extends to a pos-
terior middle temporal region) has been shown to participate in visual
object categorization (Moore and Price, 1999). The left hemisphere
homologue of this area is involved in semantic processing involving
concrete visual objects (Whatmough et al., 2002). It also shows greater
activationwhen one is evaluating semantic associations between draw-
ings as opposed to semantic associations related to word stimuli (Chee
et al., 2000).

Preparatory activity in frontal control regions

Although not predictive of perceptual performance, category-specific
information could also be decoded from severalmedial and lateral frontal
control regions. These likely serve as sources of top-down control signals
that bias visual cortex (Peelen and Kastner, 2011).

Different frontal regions may exercise different control functions.
The frontal region most directly relevant to object processing is likely
to be rostromedial prefrontal cortex. Category-specific cue effects for
scene discrimination have recently been observed here (Peelen and
Kastner, 2011). This region may serve to maintain updated represen-
tations of potential scene contexts that in turn modulate object pro-
cessing in visual cortex (Bar, 2004). Medial and lateral rostral
prefrontal cortex are involved in maintaining specific intentions
over delays (Burgess et al., 2003; Gilbert, 2011; Haynes et al., 2007)
and may use such information to guide future responses (Karnath et
al., 1991; Lepage and Richer, 2000).

Correspondence between preparatory and stimulus evoked activity

Concurrent enhancement of target-related preparatory activity
and suppression of distractor-related preparatory activity in visual
cortex occurs when respective categories activate spatially separable
areas (Puri et al., 2009). We found that voxels that were most selec-
tive for the target category during the preparatory period continued
to show the same category selectivity after the visual stimulus. Corre-
spondingly, voxels that were negatively selective for the target
category, i.e., lower activation magnitude for the target than non-
targets, remained negatively biased. Notably, this selectivity was evi-
dent even when exemplars of all four categories were presented
concurrently within natural scenes, and participants had no prior
knowledge of where the target would appear. As such, the present re-
sults generalize prior findings concerning concurrent enhancement
and suppression of target and non-target neural activity to instances
where category selectivity is evident at the voxel level — a finer spa-
tial scale.

Conclusion

We found that preparatory patterns in the anterior LOC that dis-
tinguish target objects embedded in natural scenes from non-target
objects predict perceptual performance. Patterns in the preparatory
and stimulus-evoked phases within this cortical region reflecting in-
creased as well as decreased signal changes relative to baseline
were strikingly congruent. These signals likely correspond to visual
semantic information related to the object category and its likely
surroundings.
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