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INTRODUCTION
Whether we are waiting for a traffic light to turn green or 

for a starter’s horn to sound, expectations about when a critical 
event will occur can affect response time. Temporal expecta-
tion enables us to focus attention so as to optimize perceptual 
and motor processing for a forthcoming event.1–3 The percep-
tual boost that arises from engaging attention is brief,4 and 
sustaining attention to detect and respond to temporally un-
predictable stimuli is cognitively demanding.5,6 The latter is 
evidenced by the decline in performance with time-on-task7–11 
as well as poorer performance when target stimuli are tempo-
rally irregular.12

Sleep deprivation can degrade performance simply by in-
creasing the likelihood of microsleeps.13,14 However, even when 
responding is possible, the reduced visual processing rate15 
and diminished capacity to process task-unrelated peripheral 
information16 point to a decreased availability of perceptual 
and cognitive resources. Retaining the ability to use temporal 
information to focus processing at the most propitious time 
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could thus benefit performance in sleep deprived persons. The 
manner in which such temporal preparation is affected by 
sleep deprivation remains relatively unexplored.

Elapsed time prior to an imperative event has consistently 
been shown to modulate behavior.17 For example, when waiting 
for a traffic light to turn green, one’s readiness to hit the ac-
celerator pedal increases with elapsed time because the prob-
ability that the light will turn green increases with time given 
that it has not already done so (known as the hazard function). 
Research on implicit time perception and the engagement of 

“nonspecific preparation” dates back over a century18,19 but has 
recently attracted renewed interest.20–22

Implicit temporal expectation has been studied using the 
foreperiod (FP) effect, in which the interval between a pre-
ceding warning signal and an imperative signal (the forepe-
riod) strongly modulates response speed. When FP durations 
are randomly and uniformly distributed, as in “variable FP” 
experiments, responses become faster with longer FP dura-
tions. Traditionally, the FP effect has been explained by pro-
posing that a strategic preparatory process is invoked. A key 
feature of this strategic process is that the conditional prob-
ability of stimulus occurrence is continuously monitored to 
optimize behavior.18,23

A more automatic process has been posited to account for an 
additional phenomenon observed in variable FP experiments. 
This “sequential effect” is characterized by longer response 
times for trials in which the FP is shorter than the preceding 
one, in comparison to trials in which FP are equal or longer.19,24 
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This effect is thought to be driven by an automatic process 
whereby preparedness is temporarily increased following a 
short FP and temporarily decreased following a long FP.25 The 
sequential effect is also typically asymmetrical, affecting cur-
rent short FP trials more than long FP ones.17 The asymmetry 
of the sequential effect also contributes to the shape of the FP 
effect itself.23

Although the sequential and FP effects are related, they 
are also at least partially dissociable. Patients with prefrontal 
damage,26,27 young children with incompletely developed 
frontal areas,23 adults undergoing transcranial magnetic 
stimulation (TMS) of the frontal cortex,20 and those engaged 
in cognitively demanding tasks17 show evidence of impaired 
FP but preserved sequential effects. Such dissociations have 
supported the view that the sequential effect reflects an au-
tomatic, low-level process, whereas higher cognitive func-
tions supported by the prefrontal cortex contribute to the FP 
effect.

Consistent with the notion that implicit timing may be in-
tact despite sleep deprivation, the FP effect (Also referred to 
as the “variable response-stimulus interval” [RSI] effect) was 
found to be spared by sleep deprivation.28 Here, we extended 
prior research by reexamining this finding with a much larger 
sample size and by studying the effect of sleep deprivation on 
the sequential effect. We also examined how interindividual 
differences in vulnerability to sleep deprivation29,30 affect FP 
and sequential effects.

We hypothesized that the sleep deprived brain would con-
serve depleted processing capacity by relying on more auto-
matic processes and by deploying attention selectively when 
targets are most likely to occur in an ongoing trial (i.e., as 
conditional probability increases). Such changes would yield 
larger FP and sequential effects compared to the rested state, 
especially in persons more vulnerable to sleep deprivation. In 
addition, as FP and sequential effects utilize implicit timing, 
their full expression may be dependent on the distribution of 
interstimulus intervals. We thus examined how using an expo-
nential instead of a uniform distribution would affect the FP 
effect in sleep deprived persons.

MATERIALS AND METHODS

Participants 
One hundred seventy-two healthy, right-handed participants 

(mean age 21.9 ± 1.9 y; 90 males) contributed data to this study. 
Each participant provided informed consent in accordance 
with study protocols approved by the National University of 
Singapore Institutional Review Board (IRB). Participants were 
derived from six different functional imaging studies32–37 and 
one behavioral study38 conducted in the same research labora-
tory, under similar experimental conditions.

In each of the contributing studies, participants were se-
lected from respondents to a web-based questionnaire who: (1) 
were right-handed, (2) had regular sleeping habits, (3) slept no 
less than 6.5 h/night, (3) were not on any long-term medications, 
(4) had neither symptoms nor history of sleep disorders, (5) 
had no history of psychiatric or neurologic disorders, (6) drank 
fewer than three caffeinated drinks per day, and (7) were not 
of an extreme chronotype as assessed by the Horne-Östberg 

Morningness-Eveningness questionnaire,39 i.e., participants 
must have had a score between 35 and 65.

The sleep pattern of each participant was monitored 
throughout the study and only those whose actigraphy (Acti-
watch, Philips Respironics, Pittsburgh, PA, USA) data indi-
cated habitual good sleep (i.e., sleeping no later than 12:30 and 
waking no later than 09:00) were recruited. All participants 
indicated that they did not smoke or consume any medication, 
stimulants, caffeine, or alcohol for at least 24 h prior to the test 
session.

Study Procedure
In the sleep deprivation sessions from which data were ana-

lyzed, participants arrived at the laboratory at 19:30 and were 
kept awake continuously overnight under the supervision of 
a research assistant. A 10-min visual Psychomotor Vigilance 
Task (PVT) was administered on a handheld device every hour 
from 20:00 to 05:00 (10 test periods). A single additional PVT 
was administered at approximately 08:00 after a good night 
of sleep (rested wakefulness; RW), at least one week before 
or after the sleep deprivation testing (counterbalanced order). 
This RW session was used as a control for practice effects. Par-
ticipants were seated upright during testing and were exposed 
to ordinary room light throughout the sessions.

Nineteen of the 172 participants also completed two addi-
tional experimental sessions while lying supine in a magnetic 
resonance scanner. During each session, they performed six 
repetitions of a 10-min auditory vigilance task, with each sepa-
rated by a 1-min break. The modified auditory “PVT” (part of 
a previously published experiment38) is included here to deter-
mine whether sleep deprived persons would remain sensitive 
to a change in the temporal distribution of stimuli. Although 
this experiment employed auditory stimuli, previous work has 
demonstrated a similar pattern of response slowing, lapses, an-
ticipations, time-on-task declines, and state instability across 
auditory and visual PVTs used during sleep deprivation,18 as 
well as comparable results for FP effects across these sensory 
modalities. The experiment was administrated once at 06:00 
following sleep deprivation after the 10 sessions of visual PVT 
and once at around 08:10 after a good night of sleep (RW), at 
least one week before or after the sleep deprivation testing 
(counterbalanced order).

The rationale for the selected test times has been described 
in prior publications15 and is intended to evaluate participants 
at times that are maximally unfavorable to the sleep deprived 
session.7,40 Thus, our effects represent a combination of circa-
dian and homeostatic effects.

Psychomotor Vigilance Tasks
During the visual PVT, participants were instructed to press 

a button as quickly as possible in response to a simple visual 
stimulus. Hourly 10-min PVT tests were delivered using a 
PVT-192 device (Ambulatory Monitoring, Inc., Ardsley, NY, 
USA).41 The times from a response until the next target (FPs) 
were uniformly distributed from 2 to 10 sec. A false alarm 
warning signal (“FS”) was displayed on the screen for 1 sec if 
participants made a button press before the onset of a stimulus.

In the modified auditory vigilance task, auditory tones 
(a simple low-frequency beep) were presented, to which 
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participants were instructed to respond as quickly as possible 
by squeezing a response trigger (Nordic Neurolab, Bergen, 
Norway) with their right index finger. Stimulus onset asyn-
chrony (SOA) values ranged from 4–12 sec (mean = 6 sec) 
and were randomly sampled from an exponential distribu-
tion (decay constant, tau = 2.03) so that trials with shorter FPs 
would occur more frequently than those with longer ones. A 
total of 600 tones were presented across six 10-min runs, each 
separated by a ~1-min break.38

Data Analysis
To investigate the effect of sleep deprivation on implicit time 

processing, visual PVT test bouts 2 to 4 (21:00–23:00) in the 
wake maintenance zone on the sleep deprivation night were ag-
gregated for each participant to reflect the rested state (evening 
before sleep deprivation, ESD). Test bouts 7 to 9 (03:00– 05:00 
the next day) were aggregated in each participant to reflect the 
sleep deprived state (total sleep deprivation, TSD, Figure 1A). 
Trials with response times (RT) less than 150 ms, or those for 
which participants responded before stimulus onset, were re-
corded as false alarms (FAs). The two trials following each FA 
were not included in subsequent analyses.

The foreperiod (FPn) refers to the interval between the re-
sponse to the previous (n–1) trial and stimulus onset, marked 
by the appearance of running digits on the PVT’s timer display, 
of the current (n) trial (Figure 1B). Each FPn was classified into 
one of three uniformly divided bins – short (2–4.67 sec), me-
dium (4.67–7.33 sec), or long (7.33–10 sec). In the auditory task, 
which had a slightly different timing regimen to accommodate 
an exponential distribution with the same stimulus presenta-
tion density, FPn were classified into short (4–6.67 sec), me-
dium (6.67–9.33 sec), or long (9.33–12 sec) bins. Within each 
bin, median RTs were calculated for individual participants 
and then averaged across participants. FP and sequential ef-
fects were explored using analyses of variance (ANOVAs) and, 
for clarity, specific planned contrasts. For example, the FP ef-
fect was defined as the difference between response times as-
sociated with short FPn and those with long FPn

18,28 as follows:

Foreperiod effect = RT short FPn – RT long FPn

To further explore the sequential effect in post hoc contrasts, 
we considered the conditions in which it would be expected to 
be largest (because of its asymmetry), specifically when the 
current FP was short. This contrast was defined as follows:

Sequential effect = (RT short FPn | long FPn–1) – 
(RT short FPn | short FPn–1)

Participants were classified as nonvulnerable or vulnerable 
to TSD on the basis of the change in that person’s number of 
recorded lapses between TSD and ESD (δl = lTSD − lESD). A 
lapse was defined as a trial with RT ≥ 500 ms.7,13 These trials 
were used for vulnerability classification and included in the 
FP and sequential effect analyses. Persons belonging to the 
upper third were classified as vulnerable, whereas nonvulner-
able persons were in the lower third.

As PVT testing in ESD always preceded TSD sessions, we 
evaluated the effect of order by comparing the three PVT test 

bouts conducted between 21:00–23:00 (ESD) with a single 
rested wakefulness PVT test bout (RW, 08:00) conducted one 
week after the ESD session (92 participants).

All statistical analyses were conducted using SPSS 21 (IBM, 
Chicago, IL, USA), R (R Foundation for Statistical Computing, 
Vienna, Austria), and Matlab 2012a (The MathWorks, Inc., 
Natick, MA, USA).

RESULTS

Effects of Sleep Deprivation on Psychomotor Vigilance
During TSD, responses were slower (mean response 

time ± standard error of the mean [SEM] for ESD: 267 ± 3 ms; 
for TSD: 357 ± 11 ms; t171 = 8.79, P < 0.0001), more variable 
(standard deviation of response time ± SEM for ESD: 79 ± 5 
ms; for TSD: 262 ± 31 ms; t171 = 5.90, P < 0.0001) and asso-
ciated with a significant increase in lapses (ESD: 1.37 ± 0.15 
lapses per PVT session; TSD: 6.11 ± 0.48 lapses per PVT ses-
sion; t171 = 10.86, P < 0.001). For completeness, the means of the 
median RTs at each hourly PVT test bout throughout the TSD 
night are shown (Figure S1, supplemental material). Nonvul-
nerable participants (n = 57) had a smaller average state-related 
change in lapse count per 10-min PVT Δcount ≤ 4) relative to 
vulnerable participants (n = 57; Δcount ≥ 16). A summary of 
the differences in PVT responses between the vulnerable and 
nonvulnerable groups can be found in Table 1.

Foreperiod (FPn) durations were grouped into three bins—
short, medium, and long—for our principal analyses. For com-
pleteness, RT data in 1-sec resolution bins were also plotted 
(Figure S2, supplemental material). There were significant 
main effects of state (F1,171 = 285.24, P < 0.001) and FP dura-
tion on response time (F2,342 = 1,483.70, P < 0.001). Participants 

Figure 1—(A) During the sleep deprivation session, the PVT was 
administered every hour from 20:00 until 05:00 the next morning (10 test 
periods). PVT data collected from 21:00 to 23:00 constituted the evening 
before sleep deprivation (ESD) state, whereas the last three test epochs 
(03:00 to 05:00) constituted the total sleep deprivation (TSD) state. (B) 
Schematic showing how foreperiod, stimulus onset, and response are 
inter-related.
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responded faster when FPs were longer (Figure 2A). There was 
also a significant interaction between FP duration and state 
(F2,342 = 71.21, P < 0.0001), whereby the difference between 
the response time for short and long FPs was larger during 
TSD. A two-way repeated-measures ANOVA on the FP ef-
fect with state and vulnerability as factors revealed significant 
main effects of state (F1,56 = 63.64; P < 0.001) and vulnerability 
(F1,56 = 9.81; P < 0.01). There was also a significant state by vul-
nerability interaction (F1,56 = 8.42, P < 0.01), indicating that the 
FP effects in the nonvulnerable and vulnerable groups were 
differentially modulated by state (Figure 4A), with the vulner-
able group showing a greater increase in the magnitude of the 
FP effect.

In order to test for asymmetric sequential effects, we ex-
amined the effect of FPn and FPn−1 combinations on response 
time. Two-way repeated-measures ANOVAs were per-
formed in both ESD and TSD separately. Significant FPn by 
FPn−1 duration interactions were found in both states (ESD: 
F4,684 = 122.60, P < 0.001; TSD: F4,684 = 55.02, P < 0.001; Fig-
ures 3A and 3B) in addition to a main effect of FPn−1 on re-
sponse time, indicative of a sequential effect (F2,342 = 260.86, 
P < 0.001). Consistent with an asymmetric sequential effect, 
when FPn was short, a short FPn−1 resulted in faster response 

times compared to a long FPn−1. A planned post hoc paired 
t test showed that the sequential effect was larger following 
TSD than ESD (t171 = 3.29, P < 0.05).

There was a significant state by vulnerability interaction 
on the sequential effect (F1,56 = 5.18, P < 0.05; Figures 3C and 
3D), in addition to significant main effects of state (F1,56 = 5.59; 
P < 0.05) and vulnerability (F1,56 = 10.64; P < 0.005). Post hoc 
tests revealed that vulnerable participants showed a significant 
increase in the sequential effect from ESD to TSD (t56 = 2.63, 
P = 0.01; Figure 4B), whereas there was no significant change 
in the magnitude of the sequential effect across state for the 
nonvulnerable group (t56 = 0.38, not significant).

Effect of Sleep Deprivation on FA Rates
FAs are “errors of commission” that indicate continued ef-

fort on the part of participants.7 There was a main effect of state 
on the total number of FAs (F1,56 = 18.21; P < 0.001) as well 
as a significant state by vulnerability interaction (F1,56 = 6.53, 
P < 0.02). The latter indicates that the number of FAs was dif-
ferentially modulated by TSD in nonvulnerable and vulnerable 
groups (Figure 5). Post hoc paired t tests showed that TSD in-
creased the number of FAs in the vulnerable group (t56 = 4.02, 
P < 0.001). In contrast, no significant change in FA rate was 

observed in the nonvulnerable group (t56 = 1.26, 
not significant).

Effect of Temporal Distribution on FP Effect
Based on the data from the modified auditory 

PVT, the FP effect was markedly attenuated when 
FPs followed an exponential distribution (F2,36 = 2.31; 
not significant; Figure 6). Only a significant main 
effect of state was observed (F1,18 = 20.19; P < 0.001).

Controlling for “Practice”
When comparing ESD and RW sessions for the 

visual PVT, there were significant main effects 
of session (F1,91 = 7.19, P < 0.01; Figure 7A) and 
FP on response time (F2,182 = 272.08, P < 0.001; 

Table 1—Summary statistics of number of lapses, mean response time, standard 
deviation and number of false alarms in nonvulnerable and vulnerable participants in 
each state. 

Nonvulnerable Vulnerable
ESD TSD ESD TSD

Number of lapses 3.9 ± 0.9 4.6 ± 0.9 5.5 ± 0.7 39.2 ± 2.4
Mean RT (ms) 262 ± 6 279 ± 6 278 ± 4 480 ± 24
Std Deviation of RT (ms) 70 ± 7 81 ± 7 95 ± 11 569 ± 79
Number of false alarms 4.2 ± 0.9 5.0 ± 0.7 4.1 ± 0.6 8.3 ± 1.3

Values are for 30 min of PVT performance (three aggregated sessions per state). 
Errors are standard error of the mean. ESD, evening before sleep deprivation; RT, 
response time; TSD, total sleep deprivation.

Figure 2—(A) Mean of median response times as a function of the current foreperiod (FPn: short, medium and long) and state (ESD versus TSD). (B) 
There was a significant effect of vulnerability on response times at all foreperiod durations (F1,56 = 32.68; P < 0.01). Solid lines and dashed lines denote 
data pertaining to nonvulnerable and vulnerable participants, respectively. Error bars represent standard error of the mean. ESD, evening before sleep 
deprivation; TSD, total sleep deprivation.
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Figure 7A). However, the absence of any significant forepe-
riod by session interaction (F2,182 = 1.72, not significant), sug-
gests that repeated performance of the PVT did not have an 
appreciable effect on FP. A paired t test on the FP effect itself 
also found no significant difference between the two sessions 
(t91 < 1; not significant).

DISCUSSION
We investigated the effect of sleep deprivation on temporal 

preparation by using the PVT, a speeded response time task 
that provides feedback and whose trials have FPs that follow 
a simple uniform distribution. Remarkably, in spite of behav-
ioral lapses and increased response times, participants could 

Figure 3—Mean of median response times as a function of the current foreperiod (FPn) and the immediately prior foreperiod (FPn−1) displayed separately 
for (A) ESD and (B) TSD. Response times separated by vulnerability to sleep deprivation during (C) ESD and (D) TSD are shown. Solid lines and dashed 
lines denote data pertaining to nonvulnerable and vulnerable participants respectively. Error bars represent standard error of the mean. ESD, evening 
before sleep deprivation; TSD, total sleep deprivation.

Figure 4—(A) Foreperiod effect and (B) sequential effect for short current foreperiods as a function of state (ESD versus TSD) and vulnerability to sleep 
deprivation. Sleep deprivation increased the magnitude of the foreperiod effect in both vulnerable and nonvulnerable groups, but the increase was larger 
in vulnerable individuals. A significant increase in the sequential effect was observed in vulnerable but not nonvulnerable participants following TSD. Error 
bars represent standard error of the mean. ESD, evening before sleep deprivation; TSD, total sleep deprivation.
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still perceive the conditional probability of temporal events 
and modify their level of preparation accordingly. Both FP 
and sequential effects were magnified following sleep depriva-
tion in vulnerable individuals. Only the FP effect increased in 
nonvulnerable individuals. Taken together, these findings re-
flect (1) a greater reliance on automatic processing and (2) sys-
tematically delayed allocation of processing resources toward 
more likely imperative events, whose conditional probability 
increases during each ongoing trial.

Preserved Perception of Conditional Probability following 
Sleep Deprivation

The FP effect has been attributed to a strategic process,18,23 
which modulates preparedness according to this perceived 
conditional probability.17 Expectations concerning the prob-
ability of stimulus occurrence over time can minimize effort.42 
In support of a “strategic” aspect to the FP effect are findings 

that it is impaired in patients with prefrontal damage,26,27 in 
adults undergoing transcranial magnetic stimulation (TMS) to 
the frontal lobe,20 in children,23 and in adults with an increased 
cognitive load.17

Orthogonal to these findings but relevant to work on sleep 
deprivation is a popular hypothesis that sleep deprivation alters 
behavior largely through its effects on prefrontal function.43 
However, the significant increase in the FP effect in sleep de-
prived persons is surprising in light of generally decreased FP 
effects following challenges to the frontal lobe. One potential 
explanation is that sleep deprivation most strongly affects sus-
tained attention,44 whose degradation is also observed during 
time-on-task effects. Resource models attribute these declines 
to the exhaustion of cognitive5,6 or neural7 resources, which can 
be hastened by temporal unpredictability as to when a critical 
stimulus will appear.45,46 In support of this notion, faster target 
detection can be achieved by reducing temporal variability and 

Figure 5—Average number of false alarms per subject in ESD and 
TSD. The number of false alarms increased significantly following sleep 
deprivation in the vulnerable group. Error bars represent standard error 
of the mean. ESD, evening before sleep deprivation; TSD, total sleep 
deprivation.

Figure 7—(A) Mean of median response times as a function of the current foreperiod and state (ESD versus RW) for 92 participants who had their RW 
session approximately one week after ESD. (B) Foreperiod effect as a function of session. Error bars represent standard error of the mean. ESD, evening 
before sleep deprivation; RW, rested wakefulness.

Figure 6—Response time as a function of current foreperiod (FPn) 
and state when foreperiod durations were drawn from an exponential 
distribution in the modified auditory PVT. Foreperiod effects were 
eliminated in both RW and TSD states. Error bars represent standard 
error of the mean. RW, rested wakefulness; TSD, total sleep deprivation.
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uncertainty about stimulus onset.18 To account for our findings, 
we suggest that during sleep deprivation, the impaired frontal 
lobe allocates the limited neurocognitive attentional resources 
toward periods of time in each unfolding trial when the stim-
ulus is most likely to appear.

The results from our manipulation of temporal expectations 
by using an exponential distribution of FPs are consistent with 
this interpretation. By employing this FP distribution, the con-
ditional probability of stimulus occurrence is equal for all crit-
ical moments, which generally yields a flat RT-FP function.47,48 
We observed these same results in our auditory vigilance task, 
with only a main effect of slower RTs overall during TSD. 
The contrast between enhancement of the FP effect during 
TSD when stimuli were uniformly distributed and the aboli-
tion of the effect when stimuli were exponentially distributed 
under the same conditions provides clear evidence that sensi-
tivity to conditional probability is preserved following sleep 
deprivation.

Critically, we posit that the combination of intact tracking of 
conditional probability, intact sense of the passage of time, and 
allocation of limited attention to later timepoints of imperative 
events, leads to the observed increase in the FP effect during 
TSD. Note that none of these processes need to be conscious or 
deliberately strategic, but they do integrate information across 
multiple trials. As such, they may represent a passive combina-
tion of inbuilt processes that serve to optimize speeded respon-
siveness in the context of impoverished processing resources. 
In short, it is remarkable that despite the expectation that we 
“tune out” during lapses, sleep deprived participants somehow 
retain the ability to keep track of the temporal features of a 
task.

Temporal Preparedness in Vulnerable and Nonvulnerable 
Individuals

Although both vulnerable and nonvulnerable subjects evi-
denced increased FPs during sleep deprivation, the effect was 
magnified in the former. In addition, the more automatic se-
quential effect and FA rates were only increased in vulnerable 
individuals. These findings argue for a resource-conserving 
adaptation during sleep deprivation that appears “strategic” 
in the sense that it makes use of the flow of time and condi-
tional probability information. Because individuals who are 
most affected by sleep deprivation show the largest effects of 
such resource allocation, this adaptation is “passive” from the 
viewpoint that it does not engage controlled processing and is 
instead a combination of several automatic processes.

In the most vulnerable individuals, the additional behavioral 
changes suggest that more cognitive processes are affected. 
For example, FAs increase markedly across states, suggesting 
a high degree of motor response instability in addition to po-
tential perceptual difficulties. The increase in the sequential 
effect suggests that sleep deprivation may have also intermit-
tently exhausted strategic control of preparation, allowing 
automatic processes to dominate behavior. These automatic 
processes would have also contributed to the FP effect,20–22 po-
tentially accounting for its further increase in the most vulner-
able individuals.

Recently, there has been great interest in characterizing 
individual differences in the neurocognitive effects of sleep 

deprivation. These differences are both substantial and trait-
like.29,30 Our results suggest that individuals who are vulner-
able to sleep deprivation may show increased automaticity in 
their behaviors, though fundamental timing processes still 
appear to be intact. Such results are pertinent to various oc-
cupations in the medical, military, and traffic control fields, in 
which cognitive timing is crucial.

Reliance on Automatic Processing Increases following Sleep 
Deprivation

A critical feature of the sequential effect is that RTs are 
longer if the current FP is shorter than the preceding one. 
The effect has been proposed to originate from an automatic 
preparation component.21,49 In support of a separate automatic 
process underlying the sequential effect, disruption of execu-
tive function, top-down control of attention, or the brain re-
gions that support these functions (i.e., dorsolateral prefrontal 
cortex) reduces the FP effect while leaving the sequential ef-
fect intact. For example, the sequential effect is undiminished 
by cognitive load,17 prefrontal lesions,26 or transcranial mag-
netic stimulation (TMS) pulses20 that are significant enough 
to disrupt executive function. The sequential effect is also 
present in children who have not yet developed a strong FP 
effect.23 It is notable that the asymmetrically faster RTs in the 
more automatic short-short sequences makes it unlikely that 
RTs in long-short sequences is due to an increased response 
refractory period during TSD.

In the current results, faster responses were clearly evident 
when contrasting short-short with long-short FP sequences for 
those most vulnerable to sleep deprivation’s effects, and FAs 
were likewise elevated during sleep deprivation. These results 
accord with greater automaticity in task performance in TSD, 
as evidenced by a reduced stop rate,50,51 elevated FA rate in 
Go/No-Go experiments,52 as well as increased errors of com-
mission in the Sustained Attention to Response Test (SART).53 
More automatic behavior following sleep deprivation is a likely 
consequence of having reduced processing resources15,54 and 
impaired attention.55–57 As such, the increase in the sequential 
effect is likely due to a passive process by which sleep de-
prived individuals respond more automatically to a stimulus 
that arrives at the same time or later than it did on the previous 
trial, but they are slow at responding if a stimulus arrives un-
expectedly early.

CONCLUSIONS
Responses to uniformly distributed random events become 

more automatic and reflect a different allocation of limited 
attentional resources in sleep deprived persons. Remarkably, 
sleep deprived persons retain sensitivity to the passage of 
time and to the temporal conditional probability of imperative 
events in spite of response slowing and increased lapses. The 
larger increase in FP and sequential effects in persons vulner-
able to sleep deprivation reflects lowered ability to respond to 
imperative stimuli that occur unexpectedly soon. These find-
ings extend previous work concerning diminished processing 
resources in the sleep deprived state and adaptations to ac-
commodate this resource-impoverished state. On a practical 
level, they indicate that manipulating something as seemingly 
trivial as interstimulus intervals can have beneficial effects 
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on behavior in fatigued persons. Perhaps in the future, boring 
but critical tasks such as baggage screening or quality control 
could be temporally gated by machine to avoid unfavorable 
exposure timings. Finally, the current work also demonstrates 
that deeper analysis of a stream of reaction time data can pro-
vide higher order information regarding behavior not evident 
from summary statistics of aggregated trials.
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SUPPLEMENTAL MATERIAL

Figure S1—Mean of median response times at each testing period. 
Error bars represent standard error of the mean. ESD, evening before 
sleep deprivation; RW, rested wakefulness; TSD, total sleep deprivation.

Figure S2—(A) Foreperiod effect was present in both ESD and TSD conditions. (B) The foreperiod effect was significantly larger during TSD. Error bars 
represent standard error of the mean. ESD, evening before sleep deprivation; TSD, total sleep deprivation.


