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The effects of age on functional connectivity (FC) of intrinsic connectivity networks (ICNs) have largely been de-
rived from cross-sectional studies. Far less is known about longitudinal changes in FC and how they relate to
ageing-related cognitive decline. We evaluated intra- and inter-network FC in 78 healthy older adults two or
three times over a period of 4 years. Using linearmixedmodelingwe found progressive loss of functional special-
ization with ageing, evidenced by a decline in intra-network FC within the executive control (ECN) and default
mode networks (DMN). In contrast, longitudinal inter-network FC between ECN and DMN showed a u-shaped
trajectory whereby functional segregation between these two networks initially increased over time and later
decreased as participants aged. The rate of loss in functional segregation between ECN and DMNwas associated
with ageing-related decline in processing speed. The observed longitudinal FC changes and their associations
with processing speed remained after correcting for longitudinal reduction in graymatter volume. These findings
help connect ageing-related changes in FC with ageing-related decline in cognitive performance and underscore
the value of collecting concurrent longitudinal imaging and behavioral data.
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Introduction

Neuroimaginghas proven informative about the structural and func-
tional changes in the ageing brain and how these relate to accompany-
ing cognitive changes (Grady, 2012). Degradation of processing speed,
perception, memory, and executive function (Cabeza et al., 2005;
Craik and Salthouse, 2008; Lindenberger and Baltes, 1994; Park and
Reuter-Lorenz, 2009) erode the benefits of increased longevity andmo-
tivate the search for the underlying mechanisms of these functional
losses. Task-free fMRI provides information about the integrity of sever-
al highly reproducible intrinsic connectivity networks (ICNs) and iswell
suited for characterizing age and ageing related changes in brain func-
tion, as it requires minimal participant input.

Of the multiple ICNs that exist, three are particularly relevant to the
study of loss of cognitive function in older adults because their age-
related changes and associated cognitive alterations have been replicat-
ed in multiple studies (Damoiseaux et al., 2008; Fjell et al., 2015a,
2015b; Shawet al., 2015). The three ICNS are: the defaultmode network
(DMN), the executive control network (ECN), and the salience network
uroscience, Neuroscience and
of Singapore Medical School, 8
685.
).
(SN) (Menon, 2011;Voss et al., 2013). TheDMN is associatedwith inter-
nally oriented mentation and autobiographical memory (Buckner et al.,
2008), while the ECN is associated with demanding externally oriented
processes that have a high cognitive load or require cognitive control
(Seeley et al., 2007; Turner and Spreng, 2015). The SN serves as the
‘dynamic switch’, biasing activation of one or the other network when
a salient external event is detected (Menon and Uddin, 2010; Seeley
et al., 2007). The integrity of these three networks and their interactions
appear fundamental to higher-level cognition and are therefore rele-
vant to our understanding of the ageing brain (Greicius and Kimmel,
2012).

Indicative of their functional specialization, each ICN typically dem-
onstrates high intra-network functional connectivity (Honey et al.,
2010; Sporns, 2013; Zhang and Raichle, 2010). High signal coherence
within a network renders its sub-components more functionally
coupled, possibly resulting in greater distinctiveness of functional spe-
cialization (Dennis and Thompson, 2014; Sternberg, 2011; Wig et al.,
2011). Cross-sectional studies of older adults have highlighted the loss
of functional specialization evidenced by decreased intra-network
FC in the ECN (Allen et al., 2011; Geerligs et al., 2015) or DMN
(Andrews-Hanna et al., 2007; Ferreira and Busatto, 2013; Sambataro
et al., 2010). Loss of DMN and/or ECN connectivity has been associated
with poorer executive function, memory, and processing speed
(Andrews-Hanna et al., 2007; Mevel et al., 2013). Less commonly,
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1 Thirty-eight participants provided data from all three phases, 37 provided data from
two consecutive phases, and 3 provided data from the first and third phases.
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intra-network FC can also increase with age, for example within the SN
(Voss et al., 2013), where increased connectivity has been linked to su-
perior emotional regulation in old adults (Mather, 2012; Sze et al.,
2012).

Complementing changes in intra-network connectivity are those in-
volving inter-network FC,whichdenote functional segregation between
ICNs, for example, between task-positive ICNs (ECN and SN) and task-
negative ICN (DMN). The negative correlation of spontaneous oscilla-
tions (labeled as ‘anti-correlation’ in seminal studies) between these
networks suggests that they normally have opposing functional roles,
such that when one network is engaged, the other has to be suppressed
(Chen et al., 2013; Fox et al., 2005; see Fig. 6 in Yeo et al., 2015 for an
illustration).

Specifically negatively correlated fluctuations in BOLD signal be-
tween ‘segregated’ networks are thought to mediate transitions be-
tween internal and externally oriented cognition (Uddin et al., 2009).
Reduced segregation between DMN and task-positive networks is char-
acteristic of reduced functioning in many psychiatric conditions
(Mattfeld et al., 2014; Whitfield-Gabrieli and Ford, 2012) as well as
states associated with reduced cognitive performance like sleep-
deprivation (De Havas et al., 2012; Yeo et al., 2015).

Age-related alteration in between-ICN connectivity manifests in the
form of either reduced negative correlation or increased positive corre-
lation among various ICNs (Biswal et al., 2010; Ferreira et al., 2015). A
higher degree of network segregation at rest may be associated with
better episodic (Chan et al., 2014) and working memory (Keller et al.,
2015). During task performance, increased coupling (reduced negative
correlation) between the DMNand task-positive ICNswas also associat-
ed with poorer cognitive performance (Spreng and Schacter, 2011).

While cross-sectional studies are pertinent to the construction of
new hypotheses, longitudinal studies are equally or maybe even more
important because it may not be appropriate to extrapolate cross-
sectional findings to predict the effects of ageing (Kraemer et al.,
2000; Mungas et al., 2010; Salthouse, 2009). Longitudinal studies are
necessary to demonstrate with-subject ageing trajectories and the pos-
sible interactions between ageingwith other factors (Li et al., 2014; Raz
and Lindenberger, 2011; Voss et al., 2010). Relative to the wealth of
cross-sectional data amassed to date, there is relatively little longitudi-
nal data on changes in FC with ageing (Bernard et al., 2015). For in-
stance, Bernard et al. (2015) reported greater decline in the functional
connectivity of the posterior cingulate cortex and the DMN in memory
decliners; Fjell et al. (2015a) found that recall change was related to
change in functional connectivity over time and such positive relation-
ship differed between young and older adults.

Here, we examined the longitudinal intra- and inter-network FC
changes in a cohort of relatively healthy older adults. We focused on
task-free FC within and between three ICNs (DMN, ECN, and SN) and
their relationships with cognitive performance across five domains.
We expected intra-network FC in the three ICNs, i.e. functional special-
ization, to decrease as participants age (Ferreira and Busatto, 2013;
Onoda et al., 2012), although that in the SNmay increase or remain un-
changed given previous mixing results (Geerligs et al., 2015; Voss et al.,
2013). Secondly, we anticipated reduced segregation of inter-network
FC between task-positive networks (ECN and SN) anddefaultmode net-
work with ageing, commensurate with expectations of reduced regula-
tion (Menon and Uddin, 2010) and functional segregation (Chan et al.,
2014; Geerligs et al., 2015) of brain networks. Lastly, we sought to de-
termine whether the rate of change in intra- and inter-network FC
would be associated with longitudinal cognitive decline.

Methods

Participants

We studied 78 relatively healthy Chinese older adults (38 females; 4
left-handed; mean age = 68.03 years, SD = 5.73 years at the baseline;
mean education = 12.48 years, SD = 3.15 years) from the Singapore-
Longitudinal Ageing Brain Study (S-LABS) (Chee et al., 2009). Partici-
pants whomet study criteria underwent brain imaging at approximate-
ly 2-year intervals between 2009 and 2014. Eligible participants had to
have participated in at least two time points of the longitudinal study
and to have completed both neuropsychological assessment and brain
imaging (with satisfactory data quality1). Second, they had a Mini-
Mental State Examination (MMSE) (Folstein et al., 1975) score of 26
or greater (mean= 28.15, SD=1.40) and amodified-Geriatric Depres-
sion Screening Scale (GDS) (Yesavage and Sheikh, 1986) score of less
than 9 (mean = 0.98, SD = 1.10) at the baseline. Third, they did not
have any of the following at any time point: (1) a history of significant
vascular events (i.e., myocardial infarction, stroke, or peripheral vascu-
lar disease); (2) a history of malignant neoplasia of any form; (3) a his-
tory of cardiac, lung, liver, or kidney failure; (4) active or inadequately
treated thyroid disease; (5) active neurological or psychiatric condi-
tions; or (6) a history of head trauma with loss of consciousness. The
study was approved by the Institutional Review Board of the National
University of Singapore. All participants providedwritten informed con-
sent prior to participation.

Neuropsychological assessments

Within 3months of undergoingmagnetic resonance imaging (MRI),
all participants underwent neuropsychological assessment by trained
researchers (Chee et al., 2009; Lo et al., 2014). Five cognitive domains
were evaluated: processing speed, attention, verbal memory, visuospa-
tial memory, and executive functioning. Processing speed was assessed
with the Symbol Digit Modalities Test (Smith, 1991), the Symbol Search
Task in theWechslerMemory Scale-Third Edition (WMS-III) (Wechsler,
1997), and the Trail Making Test A (Reitan and Wolfson, 1985). Atten-
tion was assessed with the Digit Span Test and the Spatial Span Test in
WMS-III. Verbal memory was assessed with the Rey Auditory Verbal
Learning Test (Lezak et al., 2004). Visuospatial memory was assessed
with a Visual Paired Associates Test. Executive functioningwas assessed
with the Categorical Verbal Fluency Test (Lezak et al., 2004), the Design
Fluency Test in the Delis-Kaplan Executive Function System (Delis
Kaplan et al., 2001), and the Trail Making Test B (Reitan and Wolfson,
1985). The scores of each test at each time point were standardized to
T scores (mean = 50, SD = 10) with respect to the baseline. For do-
mains evaluated with multiple tests, the domain-average composite
scores per participant per time point were computed by taking the
mean of the summated T scores from the relevant tests.

Image acquisition

MRI scans were conducted on a 3 T Siemens Magnetom Tim Trio
System (Siemens, Erlangen, Germany). All participants performed an
8-min task-free fMRI scan when they fixated on a cross at the center
of a projector screen (36 continuous axial slices, TR/TE = 2000/30 ms,
flip angle =90°, FOV = 192 × 192, matrix size = 64 × 64, isotropic
voxel size = 3.0 × 3.0 × 3.0 mm3, bandwidth = 2112 Hz/pixel).
High-resolution T1-weighted structural MRI was acquired using
magnetization-prepared rapid gradient echo sequence (MPRAGE; 192
continuous sagittal slices, TR/TE/TI = 2300/2.98/900 ms, flip angle =
9°, FOV = 256 × 240 mm2, matrix = 256 × 240, isotropic voxel
size = 1.0 × 1.0 × 1.0 mm3, bandwidth = 240 Hz/pixel).

Image processing

Both functional and structural images were preprocessed using a
standard pipeline (Susanto et al., 2015; Zhou et al., 2012) based on FSL
(Jenkinson et al., 2012) and AFNI (Cox, 1996). For the structural
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image, steps included 1) image noise reduction (SUSAN), 2) skull strip-
ping using the Brain Extraction Tool (BET), 3) linear (FLIRT) and nonlin-
ear (FNIRT) registration to the Montreal Neurological Institute (MNI)
152 standard space, and 4) segmentation of the brain into gray matter,
whitematter and cerebrospinal fluid (CSF) compartments. For the func-
tional data, we 1) excluded the first five volumes, before performing
2) slice-time correction, 3) motion correction, 4) despiking and grand-
mean scaling, 5) spatial smoothing with a 6-mm FWHM Gaussian ker-
nel, temporal band-pass filtering (0.009–0.1 Hz) and detrending (first
and second order), 6) structural MRI coregistration using Boundary-
Based Registration (BBR), and nonlinear (FNIRT) registration to the
MNI space, and 7) nuisance signals reduction by regressing out signals
estimated from CSF, white matter, whole-brain global signal, and six
motion parameters. Motion quality control was performed (maximum
absolute motion ≤ 3 mm) and coregistration quality was visual
inspected for each session of all participants.

Similar to recent functional connectivity work in healthy ageing
(Andrews-Hanna et al., 2007; Betzel et al., 2014; Chan et al., 2014;
Geerligs et al., 2014), global signal regression was performed to reduce
nuisance signals and positive bias in correlations (Chen et al., 2012;
Hayasaka, 2013). The global negative index (Chen et al., 2012)was com-
puted to check the percentage of voxels showing negative correlation
with the global signal in each participant and study time point (Shu
et al., 2014). Most percentages fell below 3% (max. 6%), suggesting
that the global signal was representative of nuisance signals and should
be removed. For completeness, we also analyzed the data without glob-
al signal regression (Supplementary Materials S2).
Functional connectivity derivation

We focused on three ICNs: the defaultmodenetwork (DMN), the ex-
ecutive control network (ECN), and the salience network (SN) spatially
Fig. 1. Longitudinal studydesign schematic. Participants underwent 2 or 3 task-free fMRI and ne
connectivity (FC) matrix among 74 regions of interest (ROIs) covering the three intrinsic conne
Step 2: the intra- (orange cells) and inter-network FCs (blue cells) of the three ICNs: default m
obtained by averaging the corresponding cells in the matrices and submitted to linear mixed m
3: the same LMM were also applied to performance in each of the five cognitive domain
longitudinal changes in cognitive test scores with changes in functional connectivity.
defined by an FC-based brain parcellation scheme (Yeo et al., 2011)
(Fig. 1, step 1). Each of the three ICNs was classified into smaller sub-
networks comprising multiple regions of interest (e.g., the DMN com-
prises six sub-networks, three on each hemisphere). At subject-level,
FC between two cortical regions of interest (ROIs) was computed as
the Pearson's correlation coefficient between themean fMRI time series
of the two ROIs. Each correlation coefficient was then Fisher's r-to-z
transformed. A subject-level FC z-score matrix involving 74 ROIs from
the three ICNs was then constructed for each study time point. Average
z-scores of intra-network (DMN, ECN, and SN) and inter-network FC
(ECN–DMN, ECN–SN, DMN–SN) were then calculated for each partici-
pant at each time point for further statistical analyses.
Gray matter volume derivation

To take age and ageing-related gray matter volume (GMV) changes
into account (Chee et al., 2009), we applied an optimized voxel-based
morphometry (VBM) protocol (Good et al., 2001) using the VBM8 tool-
box (http://dbm.neuro.uni-jena.de/vbm8/) in Statistical Parametric
Mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/). We derived
subject-levelGMVprobabilitymaps at each timepoint fromT1 structur-
al images using the longitudinal preprocessing pipeline, including
(1) realigned the intra-subject images across time points; (2) created
a mean reference image for every subject; (3) corrected for intra-
subjects signal inhomogeneities using the reference image; (4) seg-
mented the bias-corrected and reference images into GM, WM and ce-
rebrospinal fluid (CSF) using an adaptive Maximum A Posterior (MAP)
technique that does not require a priori tissue probabilities (Rajapakse
et al., 1997); (5) created a study-specific template using nonlinear
DARTEL registration (Ashburner, 2007) using the segmented images
after an initial affine registration; (6) normalized the segmented refer-
ence GM/WM probability maps to the customized template in MNI
uropsychological assessments over a period of approximately 4 years. Step 1: the functional
ctivity networks (ICN) of interest was derived for each participant and at each time point.
ode network (DMN), executive control network (ECN), and salience network (SN) were
odeling (LMM) to examine the effects of ageing and age on FC in each pair of ICNS. Step
s. Step 4: brain–cognition associations were examined by correlating the estimated
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space; (7) applied the same spatial normalization to the individual's
segmented GM/WM probability maps; (8) performed modulation by
multiplying voxel values by only the nonlinear components of the Jaco-
bian determinants derived from the spatial normalization step, to ac-
count for individual brain sizes. From the subject-level GMV
probability maps, we applied binarized masks of the 3 ICNs (registered
to the study-specific template) to extract network average GMVs per
subject at each time point for further statistical analysis.

Statistical analysis on longitudinal changes

Wemodeled the longitudinal changes in FC, GMV, and cognitive per-
formance using linear mixed models (Fig. 1, step 2 & 3), that modeled
fixed and random effects simultaneously, accounting for unequal sam-
pling intervals, and missing data (Cnaan et al., 1997; Long, 2012;
Singer and Willett, 2003).

For each participant j, the dependent variable Y (FC or cognitive
score) was measured at each Time i, the longitudinal variable
representing time interval since the first available session. The first
available session of each participant was defined as the earliest session
with quality task-free fMRI data or neuropsychological assessment.
Time always started from zero. The longitudinal ageing effect was
expressed as a simple regression between Time and Y, plus a residual r.

Yij ¼ β0 j þ β1 j Timeij
� �þ rij ð1Þ

Individual differences in intercepts (β0j) and slopes (β1j) were then
modeled separately with a similar regression approach, estimated in re-
lation to Age, defined as participant's age at the first available session.
Education and Gender were included as covariates in the intercept.

β0 j ¼ γ00 þ γ01 Gender j
� �þ γ02 Educationj

� �þ γ03 Agej

� �
þ μ0 j ð2aÞ

β1 j ¼ γ10 þ γ11 Agej

� �
þ μ1 j ð2bÞ

Gender was a binary dummy variable, while Age and Education
were the grand-mean-centered versions of the respective variables. Re-
placing the corresponding terms in Eq. (1) with Eqs. (2a) and (2b) re-
sulted in Eq. (3). While equivalent to Eqs. (1) and (2a) and (2b), it
highlights the cross-level interaction effects (Morrell et al., 2009): the
intercepts (β0j) and the longitudinal changes (slopes β1j) were different
for each participant (random effect μs) and this difference might be ex-
plained by individual differences (fixed effects γs). Specifically, ageing
(Time) may proceed at different rates depending on cohort (Age),
i.e., γ11(Agej*Timeij).

Yi j ¼ γ00 þ γ01 Gender j
� �þ γ02 Educationj

� �þ γ03 Agej

� �

þ γ10 Timeij
� �þ γ11 Agej � Timeij

� �
þ μ0 j þ μ1 j Timeij

� �þ rij ð3Þ

Using the proposed linear mixed model, we first examined the lon-
gitudinal ageing effects on ICN (Fig. 1, step 2). Each of the intra-
network and inter-network FC was modeled separately. This was
followed by modeling of each of the five cognitive domains (Fig. 1,
step 3) as well as the GMV of each of the three ICN in the same fashion.
To focus on ageing effects, we primarily reported longitudinal effects re-
lated to Time (β1j), i.e., γ10 and γ11 (Eqs. (2b) and (3)), followed by sta-
tistically significant cross-sectional age effects related to Age, i.e., γ03

(Eqs. (2a) and (3)), if any, in the samemodels (see also Supplementary
Materials S5).

Since the brainmeasurementmodelswere constructed based on our
prior network hypotheses, we interpreted effects that were statistically
significant at the conventional threshold of p b 0.05 (Ruxton and
Beauchamp, 2008). Anymodels passingmultiple comparison correction
(FC: corrected for 6 models; GMV: corrected for 3 models) were also
reported. For cognitive models, we reported ageing effects with
p b 0.05 corrected for multiple comparisons (5 domains).

To determine if motion scrubbing and GMV changes with agewould
alter the FC results, we ran the same linear mixed models after motion
scrubbing (SupplementaryMaterials S1) and including GMV as a covar-
iate (Supplementary Materials S3).

Statistical analyses on brain–cognition associations

To investigate the brain–cognition associations in their longitudinal
trends (Fig. 1, step 4) (Goh et al., 2013), we focused on network FC
and cognitive domains that showed significant effects of ageing (i.e.
time or its relevant interactions). We identified three sets of slopes
reflecting longitudinal changes in FC (β1j .Connectivity), GMV (β1j .GMV)
and cognitive performance (β1j .Cognition).We computed 1) the predicted
values of each variable based on their respective linear mixed models
(i.e., Eq. (3)) at each Time i and for each participant j; 2) the subject-
specific slopes of the regression line between Time and the predicted
FCs, and cognitive scores. This gave rise to β1j .Connectivity, β1j .GMV, and
β1j .Cognition, respectively; and finally, 3) these slopes were then evaluat-
ed using multiple regression models associating cognition and FC as
follows:

β1 j:Cognition ¼ b0 þ b1 Agej

� �
þ b

2
β1 j:Connectivity
� �

þ b3 β1 j:Connectivity � Agej

� �
ð4Þ

where b2 and b3 are the estimated FC–cognition coefficient parameters.
To determine whether the observed FC–cognition correlations were

influenced by the ageing-related gray matter volume loss, we re-
analyzed the FC–cognition multiple regression by including the GMV
slope β1j .GMV as additional covariate.

All statistical analyses and visualization were performed in R 3.0.3
(R Core Team, 2014) with RStudio (RStudio Team, 2012) using linear
mixed model packages lme4 (Bates et al., 2014), lmerTest
(Kuznetsova et al., 2014), and effects (Fox, 2003), and the graphical
package ggplot2 (Wickham, 2009).

Results

Longitudinal changes in intra-network and inter-network FC

We found significant longitudinal decreases in intra-network FC
within DMN (p = 0.007) and ECN (p = 0.044) (Fig. 2), and a marginal
effect in SN (p = 0.054). Additionally, there was a significant effect of
age on DMN connectivity, with older participants showing lower FC
(p = 0.017). These indicate reduced functional specialization of the
DMNwith ageing and also in older participants (Table 1; Supplementa-
ry Table S5.1 for a full summary).

Modeling inter-network FC between each of the three ICNs (ECN–
DMN, ECN–SN, DMN–SN), we found a significant Ageing × Age interac-
tion involving ECN–DMN functional connectivity (p = 0.032). The
aggregate of individual trajectories of ECN–DMN coupled activity was
u-shaped with respect to age, with a turning point at around the age
of 65–70 years (Fig. 3 and Table 1). Longitudinal effects in the remaining
two inter-network FC were not statistically significant (p N 0.20). There
was a significant effect of age on the functional coupling between DMN
and SN with the oldest participants showing stronger coupling than
their younger counterparts (p = 0.013; Supplementary Table S5.1 for
a full summary).

Of all changes reported for functional connectivity, only intra-DMN
decline survived multiple comparison correction (p b 0.05 corrected
for 6models). Motion scrubbing did not alter the results (Supplementa-
ry Tables S1.1 and S1.2; Supplementary Figs. S1.1 and S1.2). This sug-
gests that the longitudinal changes in FC were unlikely to be due to
motion. As global signal regression is one of themore contentious issues



Fig. 2. Intra-network functional connectivity decreased with ageing. Spaghetti plots of the model-fitted longitudinal FC changes for each individual. Both DMN and ECN evidenced
longitudinal decline (βTime) in functional connectivity (FC) with ageing. Such decline was marginally significant in SN. Additionally, FC within DMN showed a significant effect of age
(βAge).
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in intrinsic functional connectivity derivation (see recent review in
Power et al., 2015), we repeated our analyses omitting global signal re-
gression. Of note, the longitudinal changes were not statistically signif-
icant (Supplementary Table S2.1), suggesting that global signal
regression is an important factor in revealing the ageing effects in our
data, consistent with recent studies (Chan et al., 2014; Fox et al., 2009).
Table 1
Longitudinal ageing (Time) and cross-sectional age (Age) effects in the linear mixed
models of intra-network (DMN, ECN, SN) and inter-network (ECN–DMN) functional con-
nectivity (FC). Statistically significant effects (p b 0.05) appear in bold.

Network
FC

Predictor Coefficient Standard
error

t pa

DMN Gender 0.012 0.016 0.75 0.46
Education −2.99e−3 2.67e−3 −1.12 0.27
Age −3.75e−3 1.53e−3 −2.45 0.017
Time −8.75e−3 3.19e−3 −2.74 7.20e−3b

Age × Time 3.41e−4 5.98e−4 0.57 0.57
ECN Gender 0.015 0.009 1.26 0.21

Education 3.48e−4 2.03e−3 0.17 0.86
Age −1.14e−3 1.14e−3 −1.00 0.32
Time −4.28e−3 2.06e−3 −2.08 0.044b

Age × Time 4.11e−4 3.87e−4 1.06 0.29
SN Gender −2.83e−3 0.015 −0.19 0.85

Education 6.90e−4 2.53e−3 0.27 0.79
Age −2.59e−3 1.50e−3 −1.73 0.088
Time −5.92e−3 3.00e−3 −1.97 0.054
Age × Time 2.97e−4 5.62e−4 0.53 0.60

ECN–DMN Gender 8.67e−3 0.01 0.86 0.39
Education −2.19e−3 1.68e−3 −1.31 0.20
Age −9.19e−4 9.82e−4 −0.94 0.35
Time −4.96e−4 1.79e−3 −0.28 0.78
Age × Time 7.34e−4 3.36e−4 2.19 0.032

Abbreviations: DMN= default mode network, ECN = executive control network, SN =
salience network.

a P-values based on Satterthwaite approximation for denominator degrees of freedom,
as implemented in the lmerTest package.

b The ageing effects in DMN and ECN intra-network FCwere also statistically significant
in the reducedmodelwithout Age × Time interaction, confirming the longitudinal decline
independent of Age.
Longitudinal changes in gray matter volume

We found robust longitudinal GMV reduction in DMN, ECN, and SN
(p b 0.001, p b 0.05 corrected for 3 models) (Fig. 4 and Table 2). Addi-
tionally, there was also an effect of age on GMV in DMN (p = 0.022)
and SN (p = 0.0014), while the effect of age was marginal in ECN
(p = 0.055) (Table 2).

Adding GMV as covariate(s) to the intra- and inter-network FC
models produced qualitatively similar results (Supplementary
Figs. S3.1 and S3.2; Supplementary Tables S3.1 and S3.2), although the
longitudinal decline of the ECN became non-significant (p = 0.07). As
Fig. 3. Age-dependent changes in inter-network functional connectivity between default
mode network (DMN) and executive control network (ECN) with ageing. Spaghetti plot
of the model-fitted longitudinal FC changes for each individual. Between-network FC
involving the ECN–DMN showed a u-shaped trajectory whereby functional coupling
between these networks initially decreased over time and later increased as with older
participants.



Fig. 4.Average graymatter volume (GMV) of all three intrinsic connectivity networks (ICNs) decreasedwith ageing. Spaghetti plots of themodel-fitted longitudinal GMV changes for each
individual. All networks evidenced longitudinal decline (βTime) in GMV with ageing. Additionally, DMN and SN showed a significant effect of age (βAge).
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such, the longitudinal changes in FC observed here are unlikely to be
solely a result of gray matter atrophy.

Longitudinal changes in cognitive performance

The same linear mixed model was applied to scores in each of the
five cognitive domains. Processing speed showed unequivocal decline
with ageing (Time, p = 0.002) at different ages (Age, p b 0.001) (Fig. 5
and Table 3). There was an increase in verbal memory with ageing
(p b 0.001), likely due to practice effect (Rönnlund et al., 2005;
Salthouse, 2009). All statistically significant ageing effects survivedmul-
tiple comparison corrections (p b 0.05 corrected for 5 domains).
Table 2
Longitudinal ageing (Time) and cross-sectional age (Age) effects in the linear mixed
models of grey matter volume (GMV). Statistically significant effects (p b 0.05) appear
in bold.

Network
FC

Predictor Coefficient Standard
error

t pa

DMN Gender −5.90e−3 5.90e−3 −1.00 0.32
Education −8.78e−4 9.84e−4 0.89 0.36
Age −1.30e−3 5.56e−4 −2.34 0.022
Time −2.84−3 3.68e−4 −7.72 b0.001
Age × Time −6.12e−5 6.63e−5 −0.92 0.36

ECN Gender −0.015 6.19e−3 −2.34 0.022b

Education 2.78e−4 1.03e−3 0.27 0.79
Age −1.15e−3 5.87e−4 −1.95 0.055
Time −2.55e−3 3.33e−4 −7.65 b0.001
Age × Time −5.99e−5 6.00e−5 −1.00 0.32

SN Gender −0.021 6.42e−3 −3.19 0.0021
Education −6.49e−4 1.07e−3 0.61 0.55
Age −1.99e−3 5.99e−4 −3.32 0.0014
Time −3.45e−3 2.77e−4 −12.46 b0.001
Age × Time −9.15e−5 4.95e−5 −1.85 0.67

Abbreviations: DMN= default mode network, ECN = executive control network, SN =
salience network.

a P-values based on Satterthwaite approximation for denominator degrees of freedom,
as implemented in the lmerTest package.

b Male had lower GMV than female.
No other cognitive domains showed significant effects of ageing
(p N 0.40), although executive function showed a statistically significant
decline with age, (p = 0.005; also see Supplementary Table S5.2 and
S5.3 for a full documentation of all cognitive domains). More work is
needed to verify if the absence of longitudinal changes in these domains
can be attributed to stable trajectory, differences in sample characteris-
tics and tests, or repeated exposure to tests (Goh et al., 2012; Lamar
et al., 2003; Salthouse, 2010, 2014).

Association between changes in FC and cognitive performance

Based on the presence of longitudinal ageing effects, three brain–
cognition regressions were conducted, associating the longitudinal
Fig. 5. Processing speed decreased with ageing in healthy older adults. Spaghetti plot of
model-fitted longitudinal changes in processing speed with ageing for each individual.
Processing speed evidenced a longitudinal decline (βTime) with ageing as well as a
significant effect of age (βAge).



Table 3
Longitudinal ageing (Time) and cross-sectional age (Age) effects in the linear mixed
model of speed of processing performance. Statistically significant effects (p b 0.05) appear
in bold.

Model Predictor Coefficient Standard
error

t pa

Processing speed Gender 1.71 1.48 1.16 0.25
Education 0.65 0.25 2.62 0.011
Age −0.62 0.15 −4.01 1.44e−4

Time −0.49 0.15 −3.26 1.77e−3b

Age × Time −0.026 0.028 −0.94 0.35

a P-values based on Satterthwaite approximation for denominator degrees of freedom,
as implemented in the lmerTest package.

b The ageing effect in processing speed was also statistically significant in the reduced
model without Age × Time interaction, confirming the longitudinal decline independent
of Age.

Table 4
Association between speed of processing and inter-network functional connectivity (ECN–
DMNFC) in themultiple regressionmodel. Statistically significant effects (p b 0.05) appear
in bold.

Model Predictor Coefficient Standard error t p

Processing speed Age 0.031 0.031 1 0.32
ECN–DMN FC −83.90 37.80 −2.22 0.030a

Age × FC 1.17 2.01 0.58 0.56

Abbreviations: ECN–DMN FC= inter-network functional connectivity between executive
control network and default mode network.

a The association with DMN–ECN FC was also statistically significant in the reduced
model without Age × FC interaction, confirming the brain–cognition correlation indepen-
dent of Age.
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change in processing speed with three FC measures in 3 ICNs- intra-
DMN, intra-ECN, and inter-network (ECN–DMN), separately. There
was a significant association between longitudinal change in processing
speed and inter-network connectivity between the ECN and DMN (p=
0.03) such that faster decline in inter-network segregation (ECN–DMN)
was associated with more rapid decline in processing speed (Fig. 6 and
Table 4). This relationship remained after the longitudinal decline of the
GMV of the DMN and ECN was incorporated as covariates in the brain–
cognition regression. The coefficient of FC almost unchanged (coeffi-
cient = −83.90, p = 0.038; Supplementary Table S3.2), suggesting
that the FC–cognition association cannot be solely attributed to reduced
gray matter with age/ageing.

Analyses using motion scrubbed data revealed qualitatively similar
negative correlation between longitudinal change in processing speed
and ECN–DMN FC, with slightly reduced significance level (see details
in Supplementary Materials S4).

Reductions in intra-DMN and intra-ECN FC with ageing had no sig-
nificant association with decline in processing speed (p N 0.24).
Fig. 6. Greater increase in inter-network functional coupling between executive control
(ECN) and default mode (DMN) networks was associated with faster decline in
processing speed. Each point represents the subject-level longitudinal change in brain
inter-network FC between ECN and DMN (x-axis, higher values indicate greater loss
of functional segregation) and corresponding longitudinal change in processing speed
(y-axis, lower values indicate more rapid decline in processing speed). The color of the
points indicates the participant's age at baseline. Greater ageing-related loss in
functional segregation between ECN and DMN evidenced by the increase in network
coupling between these networks was associated with faster decline in processing
speed (bconnectivity, estimated coefficient b2 in Eq. (4)).
Discussion

In observing functional connectivity and cognitive performance
among relatively healthy older adults over a period of 4 years, we
found evidence for both within-network and between-network chang-
es in functional connectivity. Ageing related decreases in intra-network
FC within the ECN and DMN, likely signify loss of functional specializa-
tion. The u-shaped trajectory of ageing-related functional segregation
between ECN and DMN suggests initial compensatory efforts and that
ends with declining functional segregation of networks in older age.
Greater decline in this ECN–DMN segregation, evidenced by increased
coupling between the networks, was associated with faster decline in
processing speed.

Ageing was associated with linear decline in intra-network functional
connectivity

Our longitudinal data affirm prior cross-sectional reports on age-
related lowering of FC within higher-order ICNs such as DMN and ECN
(Andrews-Hanna et al., 2007; Geerligs et al., 2014, 2015). We found
only marginal decline in SN connectivity with ageing, but this is consis-
tent with the mixed findings of both reduced (Geerligs et al., 2015) and
increased SN connectivity (Voss et al., 2013) in existing cross-sectional
studies. This might be due to themore heterogeneous age-related func-
tional changes of SN (Song et al., 2012), making statistical characteriza-
tion of its longitudinal trajectory more difficult. Overall, our findings
support the notion that ageing is accompanied by progressive loss of
functional specialization within brain networks related to higher cogni-
tive functions.

Ageing was associated with a u-shaped trajectory of change in
between-network functional connectivity with increasing age

Previous cross-sectional studies on old adults have shown reduced
anti-correlation or increased coupling between ECN and DMN com-
pared to young adults (Biswal et al., 2010; Chan et al., 2014; Ferreira
et al., 2015; Geerligs et al., 2015). For instance, Ferreira et al. (2015) re-
cently reported both increased positive correlation and reduced anti-
correlation in a cross-sectional study of old and young adults. Increased
synchrony between networks observed with greater age is thought to
reflect loss of segregation between functionally distinct neural modules
(Chai et al., 2013; Ferreira et al., 2015; Yeo et al., 2015). Here, our longi-
tudinal analysis revealed an ageing by age interaction of ECN–DMN
functional connectivity. Specifically, we found a u-shaped evolution of
FC with ageing (cf. age). Nonlinear age-related FC change has been doc-
umented in both longitudinal and cross-sectional studies (Fernández
et al., 2012; Fjell et al., 2015a, 2015b; Raz et al., 2005). Chan et al.
(2014) found an inverted u-shaped trend in the cross-sectional lifespan
trajectory of the functional segregation among task-positive networks
and DMN.

We attributed this nonlinear change in inter-network coupling to a
compensation mechanism that might depend on the intricate balance
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between intra-network integrity and inter-network coupling
(Antonenko and Flöel, 2014). In the face of ageing related decline of
functional specialization within DMN and ECN, younger elderly might
still be able to maintain cognitive function by recruiting additional
brain areas (Daselaar et al., 2015; Reuter-Lorenz and Cappell, 2008) or
bymaintaining the segregation between ECN andDMNduring task per-
formance (Fornito et al., 2012; Liang et al., 2015; Turner and Spreng,
2015). These compensatory efforts can be accompanied by re-
organization of intrinsic connectivity networks until the age of 60s
(Fernández et al., 2012; Song et al., 2014).With further ageing, adaptive
mechanisms appear to eventually fail (Walhovd et al., 2014), as evi-
denced by increased DMN–ECN coupling.

Interestingly, structural connectivity may also show nonlinear age-
related changes (Zhao et al., 2015). An age-varying association between
white matter integrity and processing speed has also been demonstrat-
ed (Hong et al., 2015). Future investigations could find outwhether and
how functional connectivity is related to white matter microstructure
and/or structural connectivity in the process of ageing.

Reduced functional segregation and decline in processing speed

Decline in processing speed was observed with ageing and process-
ing speed was lowest in the oldest adults. Younger elderly who evi-
denced increasing DMN–ECN coupling in the short observation period,
showed slower decline in processing speed. In contrast, the oldest par-
ticipants showed ageing related increase in network coupling and evi-
denced a faster decline in processing speed. These crucial findings
remained after taking into account age-related reduction in graymatter
volume within the two relevant ICNs.

As argued, increased coupling between ECN and DMN may indicate
poorer modularity of the ageing brain (Geerligs et al., 2015; Meunier
et al., 2010), which can compromise the balance between DMN sup-
pression and ECN activation during task performance (Grady et al.,
2006; Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2014;
Sporns, 2013; Turner and Spreng, 2015). From a cognitive perspective,
this imbalance could mean poorer ability to differentiate goal-related
and goal-irrelevant information (Braver and West, 2008; Grady et al.,
2010; Logan et al., 2002) that ultimately contributes to a decline in pro-
cessing speed.

We did not observe any association between lower functional inte-
gration within ECN and DMN and decline in processing speed. This is
in contrast with earlier cross-sectional studies that have linked age-
related decrease in DMN functional connectivity with processing
speed (Andrews-Hanna et al., 2007) aswell as decline in ECN functional
connectivity with diminished executive function (Shaw et al., 2015).

However, congruentwith the present findings, in several psychiatric
conditions such as schizophrenia and depression, loss of functional seg-
regation rather than functional specialization appears to be better corre-
lated with degraded cognitive performance (Whitfield-Gabrieli and
Ford, 2012).

Limitations

Several limitations in our study should be noted. First, our sample
size is comparable with previous cross-sectional FC studies
(Andrews-Hanna et al., 2007; Keller et al., 2015) and longitudinal mul-
timodal neuroimaging studies in ageing (Bernard et al., 2015; Goh et al.,
2013; Persson et al., 2014; Vik et al., 2015) and it doubles the suggested
sample size for task-based fMRI studies (Thirion et al., 2007). However,
it provides power to detect only moderate to large effect sizes (r N .3).
Larger samples may be required to detect the more subtle relationships
involving age, connectivity, and cognition suggested by the cross-
sectional literature (Biswal et al., 2010; Shaw et al., 2015). Second, al-
though we did not explicitly evaluate the reliability of our task-free
functional connectivity measures, a number of studies have demon-
strated satisfactory reliability using healthy older adults and multiple-
seed functional connectivity methods (Blautzik et al., 2013; Guo et al.,
2012; Jovicich et al., 2016; Song et al., 2012). Third, the selection of
parcellation schema could potentially influence experimental outcomes
in task-free studies (Zalesky et al., 2010). However, the brain
parcellation and labeling used here (Yeo et al., 2011) has been widely
used in ageing and life span studies (Betzel et al., 2014; Chan et al.,
2014; Ferreira et al., 2015; Fjell et al., 2015a). Use of surface-based reg-
istration methods and native space analysis might further account for
individual differences in network topography and provide important
finer-grained insights on age-related connectivity changes (Razlighi
et al., 2014). More work is needed to investigate the possible nonlinear
brain–cognition relationships in middle-aged persons in terms of both
inter-individual differences and intra-individual changes (Walhovd
et al., 2014).

Conclusion

In sum, we found that ageing is accompanied by linear reductions in
functional connectivity within integrated networks, as well as a
u-shaped evolution of segregation of the DMN and ECN networks. The
rate of change of functional segregation correlated with the rate of pro-
cessing speed decline. This association wasmaintained when graymat-
ter volume reduction was taken into account. These findings reiterate
the value of longitudinal studies when investigating the effect of ageing
on brain and cognition.
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