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A B S T R A C T

Fluctuations in resting-state functional connectivity and global signal have been found to correspond with vigi-
lance fluctuations, but their associations with other behavioral measures are unclear. We evaluated 52 healthy
adolescents after a week of adequate sleep followed by five nights of sleep restriction to unmask inter-individual
differences in cognition and mood. Resting state scans obtained at baseline only, analyzed using sliding window
analysis, consistently yielded two polar dynamic functional connectivity states (DCSs) corresponding to previ-
ously reported ‘low arousal’ and ‘high arousal’ states. We found that the relative temporal preponderance of two
dynamic connectivity states (DCS) in well-rested participants, indexed by a median split of participants, based on
the relative time spent in these DCS, revealed highly significant group differences in vigilance at baseline and its
decline following multiple nights of sleep restriction. Group differences in processing speed and working memory
following manipulation but not at baseline suggest utility of DCS in predicting cognitive vulnerabilities unmasked
by a stressor like sleep restriction. DCS temporal predominance was uninformative about mood and sleepiness
speaking to specificity in its behavioral predictions. Global signal fluctuation provided information confined to
vigilance. This appears to be related to head motion, which increases during periods of low arousal.
Introduction

Temporal correlations in fluctuations of blood oxygenation level
dependent (BOLD) signals across spatially separate but functionally
related brain regions have given rise to studies on resting state functional
connectivity that have enlarged our understanding of brain organization
(Biswal et al., 2010; Fox et al., 2005; van den Heuvel and Hulshoff Pol,
2010). While earlier work was based on characterization of stationary
connectivity patterns throughout the duration of the fMRI scan, it is now
clear that the fluctuating patterns of correlation over shorter timescales,
in the order of seconds to minutes might additionally inform about brain
organization and its relation to behavior.

Evaluating dynamic functional connectivity (DFC) most commonly
utilizes sliding temporal windows (Allen et al., 2014) whereby the cor-
relation structure of BOLD signals in multiple brain regions is estimated
over successive time points. Multiple transient patterns of correlation are
then clustered into sets of recurring patterns - dynamic connectivity
states (DCS). The neurobehavioral significance of these ‘brain states’
remains somewhat contentious. Some fluctuations in functional con-
nectivity (FC) have been attributed to episodes of random synchrony
(Handwerker et al., 2012), head motion (Laumann et al., 2017) and
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physiological noise (Chang et al., 2013b), but converging evidence in-
dicates that other fluctuations have neurobehavioral significance (Allen
et al., 2014; Chang et al., 2013a, 2016; Haimovici et al., 2017; Hutchison
et al., 2013; Rosenberg et al., 2016; Wang et al., 2016), particularly in
relation to shifts in attention or arousal, including falling asleep (Chang
et al., 2013a, 2016; Haimovici et al., 2017; Thompson et al., 2013; Wang
et al., 2016).

Do DFC states index behavior in cognitive domains other than arousal
or state of attentiveness? This possibility is suggested by observations of a
richer repertoire of DCS during wakefulness relative to that observed
under anesthesia (Barttfeld et al., 2015). However, the behavioral sig-
nificance of DCS in healthy persons apart from falling asleep or increased
head motion, has been recently refuted by simulation and review of prior
empirical studies (Laumann et al., 2017).

Here, informed by prior work (Thompson et al., 2013; Wang et al.,
2016; Yeo et al., 2015) we examined whether DCS derived from sliding
window analysis obtained in well rested persons, can predict perfor-
mance in cognitive domains other than vigilance, at baseline and after
multiple nights of partial sleep deprivation (SD). An attractive feature of
SD as a conditional manipulation is its reversible nature and its property
of accentuating inter-individual differences in cognitive performance
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that are not apparent when observing behavior in well-rested in-
dividuals. This extends the range of observable behavior over which
DCS-behavior correlations can be evaluated. Critically, SD affects per-
formance variably across different cognitive domains (Lim and Dinges,
2010) in a trait like manner (Lim et al., 2007; Rupp et al., 2012; Van
Dongen et al., 2004), with some subjects being vulnerable to sleep
deprivation while others remaining resilient, making it attractive for
evaluating the robustness of cognitive-behavioral associations.

In setting up our experiment to address the behavioral relevance of
different DFC states, we had an opportunity to explore a procedural issue
in functional connectivity studies: whether or not to perform global
signal regression (Liu et al., 2017; Murphy et al., 2009; Murphy and Fox,
2017). While it has been argued that doing so introduces artefactual
anti-correlations (Murphy et al., 2009) into connectivity analyses, it is
becoming apparent that physiologically meaningful alterations in global
signal fluctuation accompany periods of lowered arousal (Olbrich et al.,
2009; Wong et al., 2013) and neuropsychiatric disorders (Yang et al.,
2014) and that removing global signal in these contexts omits useful
network information originating from neuronal sources (Liu et al., 2017).
The extent to which global signal contributes to the prediction of
behavior following sleep restriction is of interest and may clarify the
utility its elucidation while studying behavior-FC associations.

To answer these questions, we obtained resting state fMRI in ado-
lescents who were ‘sleep saturated’ prior to scanning to generate an ideal
condition for upholding vigilance performance. We analyzed the imaging
data using sliding window dynamic functional connectivity analysis
performed with global signal regression. Global signal fluctuation itself
was also assessed independent from this analytic pipeline. Participating
adolescents then underwent 5 consecutive nights of sleep restriction
under close supervision as well as nocturnal EEG monitoring to degrade
cognitive performance and mood as well as to enhance inter-individual
differences in these, in a reversible manner. We then related how dif-
ferences in temporal occupancy (dwell time) of different DCS states prior
to sleep restriction, informed about behavioral alterations in different
cognitive domains after sleep restriction. We also examined the indepen-
dent contribution of global signal to these behavioral predictions.

Materials and methods

Participants and recruitment criteria

A total of 80 participants (40 females, age¼ 15–19y) from three
quasi-laboratory studies conducted in a student dormitory contributed
data to this report. The recruitment criteria were identical across all
studies. Participants were screened based on the following criteria: be-
tween 15 and 19 y of age, had no history of any chronic medical condi-
tion, psychiatric illness, or sleep disorder, had a bodymass index (BMI) of
�30; were not habitual short sleepers (i.e. had an actigraphically-
assessed average TIB of >6 h and no sign of sleep extension on week-
ends); had to consume fewer than five cups of caffeinated beverages a
day1; and must not have travelled across more than two time zones 1
month prior to the experiment. The studies were approved by the Insti-
tutional Review Board of the National University of Singapore. Partici-
pants were recruited through sleep education talks and recruitment
campaigns in four high-ranking schools, advertisements on the labora-
tory and social networking websites, as well as by word of mouth. All
interested participants and their legal guardians were invited to attend a
briefing session, during which written informed consent was obtained
from both the participant and their legal guardian.

Self-reported sleep timing, duration, and quality were assessed using
the Pittsburgh Sleep Quality Index (Buysse et al., 1989), while
morningness-eveningness preference was measured by the
1 Out of the 80 subjects, 70 consumed one or less cups of caffeinated drink/
day, and the rest consumed 3 or less cups/day.
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Morningness-Eveningness Questionnaire (Horne and Ostberg, 1976).
Nonverbal intelligence was evaluated using the Raven's Advanced Pro-
gressive Matrices (Raven and Court, 1998). Participants also completed
the Chronic Sleep Reduction Questionnaire (Meijer, 2008) to evaluate
their symptoms of chronic sleep restriction. The levels of daytime
sleepiness were quantified using the Epworth Sleepiness Scale (Johns,
1991), and obstructive sleep apnea was screened for using the Berlin
Questionnaire (Chung et al., 2008). Anxiety and depression were eval-
uated using the Beck Anxiety Inventory (Steer and Beck, 1997) and the
Beck Depression Inventory (Beck et al., 1996) respectively.

Study protocol

To minimize the possible effect of habitual school night sleep
curtailment on sleep physiology and cognitive performance, participants
were required to adhere to a strict 9 h nocturnal sleep opportunity (23:00
to 08:00) one week prior to the study. This served to ‘sleep saturate’ the
participants to provide ideal conditions for testing vigilance perfor-
mance, and was verified using actigraphy (Actiwatch 2, Philips Respir-
onics, Inc., Pittsburgh, PA). Study 1 and study 3 lasted 14-days, with the
first three nights being the baseline nights (B0 to B2), where all subjects
received 9-h TIB (23:00 to 08:00), followed by 7 manipulation nights
(M1 to M7), wherein the sleep restriction group received 5-h TIB (01:00
to 06:00) and the control group continued to receive 9-h TIB. The study
ended with 3 recovery nights (R1 to R3), with all subjects receiving 9-h
TIB again. Study-2 was a 15-day protocol made up of 5 components. The
first 2 nights were baseline nights (B1-B2), with all subjects receiving 9-h
TIB (23:00 to 08:00). This was followed by the 1st cycle of sleep re-
striction (M1-M5), wherein all subjects slept 5-h TIB (01:00 to 06:00). All
studies were conducted in the same dormitory environment. Participants
underwent the same manipulation from B1 till M5 (Fig. 1). Additional
details of these studies have been reported elsewhere (Lo et al., 2016a,
2016b).

Cognitive performance test battery

Each subject underwent three sets of computerized cognitive test
batteries every day, at 10:00AM, 03:00PM and 8:00PM respectively. The
test batteries were administered on identical laptop computers (Acer
Aspire E11, Acer Inc., Taipei, Taiwan). Each test battery comprised of six
tasks presented to measure five different aspects of cognition:

Subjective sleepiness: 9-point Karolinska Sleepiness Scale (KSS)
(Akerstedt and Gillberg, 1990),
Sustained attention: Psychomotor Vigilance Test (PVT) (Dinges and
Powell, 1985),
Working memory and executive functions: verbal 1- and 3-back tasks (Lo
et al., 2012),
Speed of processing: Symbol Digit Modalities Test (SDMT) (Smith,
1991) and Mental Arithmetic Test (MAT) (Klein et al., 1976).
Mood: Positive and Negative Affect Scale (PANAS) (Watson et al.,
1988).

In the KSS, subjects rated their subjective sleepiness on a 9-point
Likert scale (from 1: very alert to 9: very sleepy, great effort to keep
awake). In the PVT, subjects responded as quickly as possible to a counter
that appeared randomly at intervals varying uniformly between 2 and
10 s. If the subjects did not respond to a stimulus within 10 s, a loud high-
pitched beep was presented. The primary outcome of the PVT was
number of lapses (responses with reaction time exceeding 500msec). In
the verbal 1 and 3-back tasks, letters were presented sequentially for 1 s
with a 3 s inter-trial interval (ITI). Participants were asked to decide
whether the current stimulus matched the one shown one (1-back) or
three (3-back) items ago. The ratio of match to mismatch was 8:24.
Performance was quantified by sensitivity (A') calculated using methods
described by Pollack and Norman (1964)modified for an error correction



Fig. 1. The three experimental protocols. In study-1 and 3, subjects were randomly assigned to sleep restriction or control groups. The sleep restriction group received
5-h time in bed (TIB) during manipulation while the control group received 9-h TIB throughout the protocol. In study-2, subjects were randomly assigned to nap or no-
nap groups. Both groups received 5-h TIB during manipulation with the nap group receiving additional 1-h of day-time sleep at a fixed time each afternoon. For this
analysis, the sleep restriction groups from study-1 and study-3 and no-nap group from study-2 were combined and analyzed between B1 and M5 (black dotted box).
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(Zhang and Mueller, 2005).
In the SDMT, participants were shown a key displaying 9 pairs of

digits and symbols. On each trial, a symbol appeared below the key, and
participants were required to respond by entering its corresponding digit
(ranging from 1 to 9 on the keyboard) as quickly as possible. If partici-
pants did not respond within 15s, a high-pitched beep was presented.
This task lasted for 2min. The total number of correct trials was used as a
measure of accuracy. In the MAT, a pair of 2-digit numbers was shown on
the screen. Participants were asked to add the numbers as quickly as
possible. If the participants did not respond within 15 s, a high-pitched
sound was presented. The task lasted 4-mins. The number of correct
trials in this 4min was taken as the outcome.

In the PANAS task, participants were shown 20 adjectives with 10
describing positive mood and 10 describing negative mood. Participants
needed to respond using a 5-point Likert scale (1 – very slightly, 5 –

extremely). The sum of all responses for the positive and negative affect
separately were taken as the outcome of the task.
Statistical analysis of behavioral data

Statistical analysis was performed using SPSS (version 24, Armonk,
NY: IBM Corp). Differences in screening data between the two groups
were compared using a one-way ANCOVA with study (study-1/2/3) as a
confound. A general linear mixed-effects model (MIXED) procedure with
first order heterogeneous auto-regressive (AR-1) covariance structure for
repeated measures was used to investigate the effects of group, night and
group� night interactions on cognitive measures. The covariance struc-
ture was chosen based on Bayesian information criterion. Differences of
least square means were used to determine significant differences be-
tween the two groups and across nights at P< 0.05. The study (study-1/
2/3) was included in the analysis as a confound. Contingency tables were
analyzed using χ2 test.
RS-fMRI scans

Scans were collected on a 3-Tesla Prisma system (Siemens, Erlangen,
Germany). Two runs of a 6-min resting state scan were acquired using a
gradient echo-planar imaging sequence (TR¼ 2000 ms, TE¼ 30ms,
FA¼ 900, FoV¼ 192� 192mm, voxel size¼ 3� 3� 3mm). High res-
olution structural images were collected using MPRAGE sequence
(TR¼ 2300 ms, TI¼ 900 ms, FA¼ 80, voxel dimension¼ 1� 1� 1 mm,
FOV¼ 256� 240 mm). Images were preprocessed following our pre-
viously described procedure in (Yeo et al., 2015). Preprocessing steps
3

include 1) discarding the first four frames of each run, 2) correcting for
slice acquisition-dependent time shifts in each volume with SPM-8
(Wellcome Department of Cognitive Neurology, London, UK) 3) cor-
recting for head motion using 3 rigid body translations and 3 rotation
parameters. 4) Linear trends over each run were removed and a
low-pass temporal filter retained frequencies below 0.08 Hz. 5)
6-parameter head motion and their derivatives along with white and
ventricular signals were regressed out and 6) Functional data of indi-
vidual subjects were then projected to MNI152 space, downsampled to
2 mm voxels and then smoothed with a 6-mm full width half maximum
kernel. To compute global signal, we created a whole brain mask and
derived the average percent change in the signal time course across the
mask. The standard deviation of this signal (Wong et al., 2013),
constituted ‘global signal power’ (GS). Volumes having frame wise
displacement (FD)> 0.2 mm or DVARS (Power et al., 2012)> 5% were
marked as high motion. One volume before and two volumes after each
high motion volume were also marked. If the number of volumes
marked as high motion was greater than 50% of total volumes, the
subject was excluded from the analysis. Global signal regression (GSR)
was carried out as a part of the preprocessing pipeline as prior work has
shown strong association between arousal and global signal (Wong
et al., 2013; Yeo et al., 2015).
DFC analysis

DFC was computed using a sliding window approach following (Allen
et al., 2014). Specifically, average BOLD time series from the 122 ROIs
were first de-spiked and de-meaned. A tapered window was constructed
by convolving a rectangular window (20 TRs) and a Gaussian function
(σ¼ 3 TRs). Covariance among all possible ROIs pairs within the tapered
window were estimated using the regularized precision matrix. The
graphical LASSO method (Friedman et al., 2008) with L1 norm penalty
(regularization parameter λ¼ 0.1) was applied to promote sparsity. This
process was repeated by shifting the tapered window by 1 TR. For each
functional run, we obtained 156 covariance matrices, each with 7381
(122� 121/2) unique correlation values.

Covariance matrices from 52 subjects were concatenated together
and k-means clustering was performed to classify each DFC matrix using
L1 distance as the cost function. Occurrence of each DCS was computed
as the proportion of total number of windows classified as that state for
each functional run. The occurrence of each DCS was averaged across run
for every subject. A study regressor (study-1/2/3) was used to account for
study differences. Occurrence of each DCS was then compared between



A. Patanaik et al. NeuroImage 177 (2018) 1–10
the high and low arousal index subjects using independent samples t-tests
(see section 2.7). This process was repeated for a range of clusters k¼ 3 to
7. A cluster hierarchywas formed by connecting clusters obtained at level
kwith the nearest cluster (based on L1 distance) at level k-1, to determine
the stability and consistency of the clusters at different values of k.
Irrespective of the value of k, two DCSs, appeared consistently and closely
resembled the high arousal state (HAS) and low arousal state (LAS)
previously reported (Wang et al., 2016) (see Results) representing the
polar states of arousal. Therefore, the DCS obtained at k¼ 3 were used as
representative HAS, LAS and intermediate state (IS). Clusters obtained at
higher ks, were compared with the representative states based on their
relative distances from the representative states.
4

Grouping of subjects based on arousal index

Given the consistency of the two polar states (Fig. 2), computation of
an arousal index was carried out for k¼ 3 to maximize the contribution of
each polar state while still allowing for an intermediate state. We com-
bined dwell time in HAS and LAS into a single arousal index (AI) by
subtracting proportion of time in LAS (tl) from proportion of time spent in
HAS (th). Specifically, AI was computed as:

AI ¼ 1þ th � tl

As most subjects spent more time in LAS, 1 was added to the AI
equation to make the measure positive. Subjects who spent more time in
Fig. 2. Clustering hierarchy and representa-
tive low arousal state (LAS), intermediate
state (IS) and high arousal state (HAS). (A)
The clustering hierarchy was obtained by
successively applying K-means clustering at
an increasing number of cluster centers k and
connecting the clusters obtained at level k
with nearest cluster obtained at level k - 1. At
a given value of k the dwell time for each
cluster, expressed as a percentage of the total
time of the scan, is shown beside its respec-
tive cluster. This temporal predominance was
also represented by a circular graph. Repre-
sentative LAS (pure red), HAS (pure blue)
and IS (pure green) were obtained at k¼ 3.
For the new clusters formed at k> 3, the
color of the cluster reflects its relative dis-
tance from the representative states obtained
at k¼ 3. If a new cluster was equidistant from
all the three representative states, it appeared
white, while a cluster which was close to the
LAS but distant to the HAS and IS would
appear red. Irrespective of the value of k, LAS
and HAS appeared consistently as the polar
states, with a larger proportion of the dwell
time in the LAS. (B) Representative LAS and
HAS cluster centers are shown as connectiv-
ity matrices.
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HAS and less time in LAS were provisionally labeled as having ‘higher
arousal’. Conversely, subjects who spent less time in HAS and more time
in LAS were labeled as having ‘lower arousal’. Participants were subse-
quently median-split into two groups: a low arousal index (LAI) group
and a high arousal index (HAI) group (HAI: AI> 0.715, LAI: AI� 0.715).
This resulted in 26 subjects in each group.
Analysis of graph theoretic measures

To obtain subject specific clusters, the covariance matrices associated
with a given DCS (HAS/LAS/IS obtained @k¼ 3) were averaged for each
individual subject. This resulted in three subject level clusters corre-
sponding to group level representative HAS, LAS and IS. Four subjects,
who had either no HAS or IS (2 with no HAS and 2 with no IS) were
removed from the analysis. The resulting mean covariance matrices were
treated as undirected weighted graphs, with both positive and negative
covariance being treated as equal. Graph theoretic network measures
were then obtained for HAS, LAS and IS clusters for every individual.
Global and local efficiency (Latora and Marchiori, 2001) which measure
the efficiency of information exchange at global and local (node level)
scales in a network, and network cost (Achard and Bullmore, 2007)
which measures the energy cost associated with a network were
computed. The network measures across the three clusters were
compared using a one-way repeated measures ANOVA using SPSS
(version 24, Armonk, NY: IBM Corp). Post-hoc comparisons with Sidak
correction were carried out for measures showing significant difference
across the three clusters.

Results

Two dynamic connectivity states (DCS) nominally related to ‘arousal’ were
consistently observed

The cluster hierarchy obtained by repeatedly applying k-means
clustering is shown in Fig. 2A. Irrespective of the value of k, two DCSs,
appeared consistently and closely resembled the HAS and LAS previ-
ously reported (Wang et al., 2016). Compared to the ‘low arousal’ DCS
(LAS), the ‘high arousal’ DCS (HAS; Fig. 2B) displayed higher
within-network connectivity involving DMN, control network, ventral
attention/salience network (SN) and DAN. Higher between-network
connectivity was also observed between DMN and control network
as well as between SN and DAN. High arousal (HAS) was accompanied
by greater anti-correlation between the DMN and DAN/SN as well as
between DMN and visual networks. In contrast, the low arousal DCS
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Fig. 3. Distribution of baseline arousal index values. Subjects were split in-to
two groups: the low arousal index (LAI) and the high arousal index (HAI)
group based on a median split in arousal index. Both individual arousal index at
baseline as well as group averages are shown.
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featured decoupling (lower correlation) between the visual network
and higher-order cognitive networks including DMN, control and
DAN. Even though new states appeared as the number of clusters was
increased (see Figs. S1–S5 for the cluster centers obtained at k¼ 3 to 7
respectively and Fig. S6 for direct comparison of HAS and LAS clusters
obtained at k¼ 3 with those obtained in Wang et al. (2016)), two polar
states were consistently present across different values of k and the
new states appeared to branch off from them (see Fig. 2A and
Figs. S1–S5). The representative LAS and HAS network for k¼ 3 is
shown in Fig. 2B and Fig. S1. The raw covariance matrices of the
representative LAS, IS and HAS DCS are made available online
(https://github.com/cnldukenus/Low-and-Hight-Arousal-DFC-states).

Dwell time within LAS and HAS: temporal preponderance

The dwell time in each state for the range of k is shown in Fig. 2A.
Irrespective of the value of k, subjects spent about twice as long in LAS
(average �52% @ k¼ 3) compared to HAS (average �23% @ k¼ 3)
while intermittently transitioning to the intermediate state. Subjects
showed large inter-individual differences in relative temporal predomi-
nance (dwell time) in HAS and LAS. We observed a large inter-individual
difference in AI across subjects (range: 0.05 to 1.51). The distribution of
AI across the two groups is shown in Fig. 3. The two groups did not differ
in terms of age, gender, non-verbal IQ as assessed by the Raven's Pro-
gressive Matrices, sleepiness or sleep quality (Table 1).

HAS network shows higher information transfer efficiency but at the
expense of higher network cost

The HAS, LAS and IS networks differed significantly from each
other in terms of both global ðF2;94 ¼ 92:4; P < 0:001) and local
ðF2;94 ¼ 120:6; P < 0:001) network efficiency and cost (F2;94 ¼
115:8; P < 0:001, see Fig. 4). Post-hoc comparisons revealed that both
HAS and IS (with similar global efficiency (P > 0:1)) had higher global
efficiency compared to LAS (P < 0:001). The HAS network had higher
local efficiency as compared to IS network which in turn had higher
local efficiency as compared to LAS network (all Ps < 0:001). A similar
pattern was also observed in terms of network cost, with HAS network
being most costly followed by IS and LAS respectively (all Ps < 0:001).

HAI and LAI groups showed baseline differences in vigilance

The LAI group had significantly higher lapses (reaction
time> 500ms) compared to HAI group (4 lapses/session vs 1.87 lapses/
session, F1;49 ¼ 12:4; P < 0:001, Fig. 5). There was a significant negative
correlation (after accounting for study differences) between baseline PVT
lapses and arousal index (r ¼ �0:460; P < 0:001, Fig. 5). There was no
Table 1
Subject characteristics. PSQI, Pittsburgh Sleep Quality Index. Mean� SD are
shown.

LAI
(mean� SD)

HAI
(mean� SD)

P

n 26 26
Age (years) 16.84� 1.09 16.70� 1.06 0.651
Sex (%males) 42.31 57.69 0.405
Body mass index 21.30� 2.55 20.77� 2.88 0.490
Raven's Advanced Progressive
Metrics score

9.35� 2.08 9.65� 1.89 0.579

Epworth Sleepiness Scale score 7.77� 3.59 6.65� 2.67 0.210
Chronic Sleep Reduction Questionnaire
Total score 35.50� 5.42 33.69� 4.77 0.201
Shortness of sleep 12.69� 2.20 12.23� 2.20 0.453
Irritation 7.08� 1.98 6.46� 1.30 0.191
Loss of Energy 7.92� 1.96 7.46� 1.98 0.403
Sleepiness 7.81� 1.41 7.53� 1.65 0.531

PSQI 5.61� 2.53 5.11� 1.90 0.424

https://github.com/cnldukenus/Low-and-Hight-Arousal-DFC-states


Fig. 4. Network efficiency vs. cost. The mean global and local network effi-
ciency for the high arousal state (HAS), low arousal state (LAS) and intermediate
state (IS) were plotted against their respective mean network cost. Except for
global efficiency between HAS and IS, all other pairwise comparisons for global
efficiency, local efficiency and cost were statistically significantly different
across the three dynamic connectivity states (P < 0:001).
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significant baseline difference in speed of processing, working memory
and executive control, subjective sleepiness or mood.
Fig. 5. Baseline performance differences between low arousal index (LAI) and
high arousal index (HAI) groups. LAI subjects had significantly more number of
PVT lapses following baseline night (B2) compared to HAI subjects. In addition,
PVT performance at baseline was negatively correlated with mean arousal
index. Mean � SEM are shown. ***P < 0.001.
Baseline DCS predicted unmasking of cognitive vulnerability by multiple
nights of sleep restriction

Sleep restriction significantly affected most behavioral measures
except for negative affect, as indicated by the main effect of day
(Fig. 6): decline in vigilance as assessed by PVT lapses
(F5;95 ¼ 15:23; P < 0:001), speed of processing as measured by MAT
(F5;182 ¼ 7:05; P < 0:001), working memory as indicated by 1-back
(F5;76 ¼ 4:13; P < 0:01) and 3-back (F5;105 ¼ 2:30; P ¼ 0:05) and pos-
itive affect as indicated by PANAS positive score
(F5;201 ¼ 5:85; P < 0:001) together with an increase in subjective
sleepiness as indicated by KSS (F5;66 ¼ 11:88; P < 0:001).

There was a main effect of group on performance such that the LAI
group performed significantly poorer on the PVT, 3-back
(F1;59 ¼ 4:78; P < 0:05) and the SDMT tasks (F1;51 ¼ 7:67; P < 0:01).
Post-hoc tests showed that unlike the case of vigilance, group differ-
ences in working memory and speed of processing were significant
only after sleep restriction (Fig. 6C and D). Despite the profound group
difference in vigilance performance, there was no difference in sub-
jective sleepiness (Fig. 6B), underscoring the well-known dissociation
between objective and subjective measures of sleep loss (Leproult
et al., 2003).

Only vigilance showed a significant group by day interaction
(F5;95 ¼ 2:84; P < 0:05); with the LAI group showing a significantly
larger increase in lapses with ongoing sleep restriction. To further
characterize this vigilance shift, the difference in lapse count
(ΔPVT lapses) following sleep manipulation nights M1 to M5 and
baseline night B2 was computed for both groups (Fig. 7A). There was
a significant group by day interaction (F4;86 ¼ 3:05; P < 0:05) with
the difference between the two groups reaching statistical signifi-
cance after the third night (M3). Vigilance decrement, measured as
the difference in lapses between M5 and B2, correlated with the AI
obtained at baseline (Spearman's ρ ¼ �0:421; P < 0:01, Fig. 7B). No
group by day interaction was observed in any other cognitive
6

domain. The LAI group therefore were more vulnerable to the effects
of partial sleep restriction in the domain of vigilance as compared to
the HAI group.
AI and global signal capture non-overlapping aspects of vigilance

Considering the association between AI and vigilance, it is important
to ascertain the extent to which global signal and AI make independent
contributions to predicting vigilance decline following sleep restriction.
GS was significantly higher in LAI subjects compared to HAI subjects
(0.39% vs 0.28%, F1;49 ¼ 10:23; P < 0:01). As motion contributes to GS
we also performed an analysis that included DVARS (Power et al., 2012)
as a covariate. Although reduced with this added step, the group differ-
ence in GS was still significant (P < 0.05).

GS and AI showed significant correlation with each other
(r ¼ �0:344; P < 0:05). To quantify the contribution of GS and AI to-



Fig. 6. Effects of consecutive nights of partial sleep deprivation on cognitive performance, subjective sleepiness and mood. Least squared means and standard errors
from the linear mixed effects model for low arousal index (LAI: red) and high arousal index (HAI: blue) subjects were shown for: (A) vigilance, measured by Psy-
chomotor Vigilance Task (PVT) lapses, (B) subjective sleepiness, indicated by the score on the Karolinska Sleepiness Scale (KSS), (C) working memory and executive
function, indicated by sensitivity A0 in the verbal 1 and 3 back task, (D) speed of processing, measured by the number of correct responses on the Mental Arithmetic
Task (MAT) and the Symbol Digit Modalities Test (SDMT) and (E) mood, indicated by the score on the Positive and Negative Affect Scale (PANAS). *P < 0.05;
**P < 0.01; ***P < 0.001.
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Fig. 7. Change in Psychomotor Vigilance Task (PVT) lapses across multiple
nights of sleep deprivation. (A) With reference to baseline night B2, changes in
PVT lapses across consecutive nights of sleep restriction (M1 to M5) are shown
for the low arousal index (LAI) and high arousal index (HAI) groups. Decline in
performance became significantly different between the two groups following
the third night of sleep restriction (M3). (B) The overall decline in PVT lapses
measured as a difference between lapses in M5 and B2 negatively correlated
with the baseline mean arousal index.
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wards predicting lapses in vigilance, both were simultaneously intro-
duced into a multivariate linear regression model. Additionally, a vari-
ance inflation factor (VIF) was computed for each independent variable
to ensure that the models did not suffer from multicollinearity. At the
baseline scan performed in well-rested conditions, only AI predicted
lapses in a statistically significant manner (standardized
β ¼ �0:418; P < 0:01). Both AI and GS predicted lapses (standardized
β ¼ �0:313; P < 0:05 and standardized β ¼ 0:342; P < 0:05 respec-
tively) after multiple nights of sleep restriction at M5.

When head motion, indexed using DVARS, was introduced as a co-
variate, AI continued to predict lapses both at baseline (standardized
β ¼ �0:400; P < 0:01) and following M5 (standardized β ¼ �0:287; P
< 0.05). However, with motion factored in this fashion, GS was no longer
predictive at either time point in any domain (all P> 0.05). The results
remained when frame wise displacement (FD) was substituted for
DVARS; i.e., AI predicted lapses both at baseline (standardized
β ¼ �0:409; P < 0:01) and following M5 (standardized β ¼
�0:279; P < 0:05), but GS was not predictive at either time point (all
P> 0.05). Estimated VIF remained within 2.6, suggesting that none of
the regression models had a problem of multicollinearity.

Discussion

We studied dynamic functional connectivity states (DCS) and global
signal in sleep saturated adolescents and examined how these might
inform about behavioral performance when the same participants un-
derwent 5 nights of sleep restriction to unmask inter-individual differ-
ences in cognition and mood. Inter-individual differences in decline of
speed of processing (SOP) and working memory (WM) appeared after
sleep restriction. The relative temporal preponderance of two dynamic
connectivity states (DCS) in well-rested participants, predicted inter-
individual differences in vigilance at baseline and further divergence in
vigilance performance following multiple nights of sleep restriction. In
contrast, there was a clear but relatively consistent separation in pre-
diction of SOP and WM performance after multi-night sleep restriction.
Sleepiness and mood shifts from baseline also followed this pattern.
Global signal by itself could also inform about deterioration in vigilance
with continued sleep restriction, but did not associate with deterioration
in any other cognitive domains. Polar DCS states are thus most infor-
mative about vigilance but also carry some predictive information about
speed of processing and working memory. In contrast, global signal
fluctuations inform about vigilance only. Their increase during periods of
low arousal relates to increased head motion.

Polar dynamic connectivity states: relation to arousal

The two polar DCS in the present study derived from well rested
adolescent participants resembled those discovered when evaluating
young adults in the sleep deprived state. The ‘high arousal’ DCS was
characterized by greater between network segregation in networks that
are typically anti-correlated at rest (default mode network vs. ventral and
dorsal attention networks as well as the visual network) and greater
within network integration in default mode and attention networks.
Three variations from our original DCS study which reported DCS
generated from sleep deprived participants (Wang et al., 2016) might be
the result of pre-scan sleep saturation that reduced drowsiness/sleep
during scanning (Tagliazucchi and Laufs, 2014). First, the
anti-correlations between default mode and ventral attention/salience as
well as dorsal attention networks in the ‘high arousal’ state were more
pronounced in the current dataset, resembling a previous report on static
connectivity in well-rested young adults (Yeo et al., 2015). Secondly,
anti-correlation between visual and DMN areas was clearer in the present
data than in the sleep deprived dataset. This greater anti-correlation was
present in the comparison between less vulnerable and more vulnerable
participants when using static FC to predict vigilance decline following
TSD from data obtained from rested young adults (Yeo et al., 2015).
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Finally, there was higher within-network connectivity in the default as
well as dorsal and ventral attention networks as well as higher between
network connectivity between visual and attention networks. Being
associated with fewer lapses (mean 2.24 lapses vs. 9.50 lapses in Wang
et al., 2016; Fig. S6), the ‘low arousal’ DCS in the present study can be
thought of as lying on a higher level on a continuum of arousal compared
to our original study, accompanied by correspondingly higher levels of
network segregation and integration.

The temporal predominance of the ‘low arousal’ DCS even in partic-
ipants who were verified to have adequate sleep prior to scanning, is
striking and suggests that there is energetic cost or penalty for remaining
in the ‘high arousal’ state while not actively performing a task (Bullmore
and Sporns, 2012). Persons with higher arousal indices, who spent more
time in this state may have greater ‘reserve’ to deal with the effect of
sleep restriction (Mu et al., 2005). We previously observed that baseline
differences in static functional connectivity obtained in the rested state
predict vigilance decline in the sleep deprived state (Yeo et al., 2015).
These baseline differences only partially overlapped with changes
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observed between well rested and sleep deprivation condition; the shifts
in connectivity across state were largely similar across vulnerability. This
suggests that group differences in vigilance decline under conditions of
sleep deprivation/restriction are mostly captured in baseline physiolog-
ical observations.

Utility of DCS in predicting behavior at baseline and following sleep
restriction

Sleep restriction can be thought of as a ‘cognitive stress test’ akin to a
treadmill stress test that serves to unmask cognitive vulnerabilities by
amplifying subtle deviations in physiological or behavioral measures
already present on baseline testing but which are still within acceptable
bounds (Chua et al., 2014). Classified according to AI differences, par-
ticipants from the present study showed significant baseline differences
in vigilance as well as group differences in processing speed and working
memory after nights of sleep restriction (for SDMT and 3-back tasks). As
such, DCS, while most clearly speaking to differences in vigilance/ar-
ousal also inform about two cognitive domains that account for much of
the variance in inter-individual cognitive ability (Van Dongen et al.,
2004).

Previous work (Chua et al., 2014) suggests that sleep restriction
resilient subjects show increased baseline arousal arising from greater
ascending neuro-modulatory input compared to vulnerable subjects
based on their having a higher baseline heart rate, lesser change in heart
rate variability and lower theta activity in the waking EEG compared to
vulnerable subjects. The greater temporal preponderance of the ‘high
arousal’ state in participants who have better vigilance, speed of pro-
cessing and working memory lends support to this argument. While more
efficient, this network state is more ‘costly’ (Achard and Bullmore, 2007;
Bullmore and Sporns, 2012) andmay be switched to only when needed to
facilitate task performance.

Resilient individuals may have brains that exhibit ‘task ready’ levels
of functional connectivity more frequently, and are more likely to be
higher functioning. This notion finds support in a recent study that
showed, albeit using different methodology, that greater similarity be-
tween functional connectivity at rest and ‘efficient connectivity’ during
task performance marks a higher level of general intelligence (Schultz
and Cole, 2016). While leaders of organizations are often sleep deprived,
intelligence does not appear to be associated with resilience to sleep
deprivation. In the present sample, differences in vigilance decline were
not associated with general intelligence as assessed by Ravens Progres-
sive Matrices.

Global signal fluctuation relates to vigilance and head motion

In contrast to the DCS based arousal index (AI), global signal differ-
ences between participants only predicted vigilance after nights of sleep
restriction but did not distinguish participants on baseline performance.
GS, which represents the standard deviation of this signal over the entire
time course of a resting state study, has been shown to relate to EEG-
measured vigilance (Olbrich et al., 2009; Wong et al., 2013), and the
transition to light sleep (Horovitz et al., 2008). More recently, the global
signal has also been found to be induced by a characteristic electro-
physiological event that occurs at state transitions and appears to be
related to subcortical regions regulating arousal and vigilance (Liu et al.,
2018). Future work should investigate how GS amplitude and DFC state
occurrence influence temporal fluctuations in vigilance at the
subject-level.

Functional imaging studies have noted a correlation between GS and
head motion but have not directly linked this to decreases in vigilance.
Increased head motion and decline in vigilance has been reported in
behavioral (Van Den Berg, 2006) and driving studies (Vural et al., 2007).
In agreement with these observations, we found that the association
between global signal and vigilance became non-significant whenmotion
was introduced as a co-variate in the analysis of global signal
9

contributions to behavioral prediction. The present findings should thus
encourage thinking of headmotion not merely as a ‘nuisance’ but a factor
that shows phenotypic variation that has neural (lower arousal) origins.

Conclusion

In sum, polar DCS states are most informative about vigilance but also
carry predictive information about declines in speed of processing and
working memory following sleep restriction. These DCS states do not
predict increased sleepiness or decline in mood. In contrast, global signal
fluctuations appear to only inform us about vigilance changes following
sleep restriction. These findings clarify the cognitive associations be-
tween dynamic functional connectivity and behavior that are accentu-
ated during sleep restriction.
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