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Study Objectives: To compare the quality and consistency in sleep measurement of a consumer wearable device and a research-grade actigraph with
polysomnography (PSG) in adolescents.
Methods: Fifty-eight healthy adolescents (aged 15–19 years; 30 males) underwent overnight PSG while wearing both a Fitbit Alta HR and a Philips Respironics
Actiwatch 2 (AW2) for 5 nights, with either 5 hours or 6.5 hours time in bed (TIB) and for 4 nights with 9 hours TIB. AW2 data were evaluated using two different wake
and immobility thresholds. Discrepancies in estimated total sleep time (TST) and wake after sleep onset (WASO) between devices and PSG, as well as epoch-
by-epoch agreements in sleep/wake classification, were assessed. Fitbit-generated sleep staging was compared to PSG.
Results: Fitbit and AW2 under default settings similarly underestimated TSTand overestimated WASO (TST: medium setting (M10) ≤ 38 minutes, Fitbit ≤ 47
minutes;WASO:M10≤ 38minutes; Fitbit≤ 42minutes). AW2 at the highmotion threshold setting provided readings closest to PSG (TST:≤12minutes;WASO:≤18
minutes). Sensitivity for detecting sleep was ≥ 90% for both wearable devices and further improved to 95% by using the high threshold (H5) setting for the AW2
(0.95). Wake detection specificity was highest in Fitbit (≥ 0.88), followed by the AW2 at M10 (≥ 0.80) and H5 thresholds (≤ 0.73). In addition, Fitbit inconsistently
estimated stage N1 + N2 sleep depending on TIB, underestimated stage N3 sleep (21–46 min), but was comparable to PSG for rapid eye movement sleep.
Fitbit sensitivity values for the detection of N1 + N2, N3 and rapid eye movement sleep were ≥ 0.68, ≥ 0.50, and ≥ 0.72, respectively.
Conclusions: A consumer-grade wearable device can measure sleep duration as well as a research actigraph. However, sleep staging would benefit from
further refinement before these methods can be reliably used for adolescents.
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BRIEF SUMMARY
Current Knowledge/StudyRationale:Consumer sleep trackers are an attractive alternative to expensive research actigraphs formeasuring sleep. However,
validation studies in adolescent populations are limited and typically conducted on only 1 night of sleep. We compared a consumer sleep/activity tracker and a
research-grade actigraph with polysomnography (PSG) over different sleep opportunities and across multiple nights.
Study Impact: Sleep estimation was comparable between the consumer wearable device and research-grade actigraphy on default settings. Both
underestimated sleep duration compared to PSG. Sleep estimation improved in the research actigraph by adjusting sensitivity to motion. With data-driven
customization, consumer wearable devices could replace research actigraphs for large-scale total sleepmeasurement. Sleep staging still lags behind PSG and
needs further work, particularly for assessment of stage N3 sleep.

INTRODUCTION

Sleep is increasingly recognized as important for health
and well-being. In addition to this growing awareness,
wearable devices that incorporate accelerometers have
proliferated on a massive scale. Annual global sales esti-
mated to be under 25 million in 2014 are expected to
reach 125 million by the end of 2018.1 Growth in sales of
smartwatches in particular have been even more dramatic,
leaping from 5 million to 80 million in the same time interval.
Originally intended to track physical activity, many wearable
devices now incorporate algorithms that can provide outputs
on sleep.2–4

Although polysomnography (PSG) remains the gold stan-
dard for quantifying sleep, wrist actigraphy based onmovement
(where the absence ofmotion implies sleep) is inexpensive and a
widely available proxy for estimating sleep in nonlaboratory
settings. Actigraphy is well suited for large-scale longitudinal
surveys of personal and/or community sleep habits, and how
these influence health andwell-being. It has beenwell validated
against PSG in adults and is widely adopted in research and
clinical settings.5–7 To date, expensive “research-grade” acti-
graphs remain the mainstay in scientific studies, influenced by
mixed reports about the reliability,8–12 particularly the accuracy
of sleep detection of earlier consumer devices. However, con-
stant advancements including the use of heart rate variability
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(HRV) measurement to estimate sleep stages13,14 and recent
reports of good agreement with research devices15,16 motivate a
detailed re-evaluation of consumer-grade devices.

The current report has several features that might serve to
better inform about the feasibility of using consumer grade
activity trackers to estimate sleep in research studies. First, we
collectedmultinight sleep data per individual across three levels
of sleep opportunity (5 hours, 6.5 hours, and 9 hours), con-
currently comparing a relatively newconsumerwearable device
that incorporates heart rate measurements to augment sleep/
wake classification (Fitbit Alta HR, Fitbit Inc., San Francisco,
California) with a research actigraph (Actiwatch 2, Philips
Respironics Inc., Pittsburgh, Pennsylvania). Both devices were
referenced to PSG sleep measurement. Second, we focused on
an adolescent sample. Although actigraphy tends to over-
estimate sleep in adults, some studies have found underesti-
mation of sleep in adolescents.17–19 To examine how sensitivity
to motion might affect appropriate sleep detection, we used
two different motion sensitivity settings to evaluate sleep.
Finally, we assessed how well the consumer wearable device
could stage adolescent sleep.

METHODS

Participants
Participants consisted of 58 adolescents aged 15 to 19 years
(mean ± standard deviation [SD]: 16.6 ± 0.94 years; 30 males)
who took part in a study examining the cognitive and metabolic
effects of sleep restriction in adolescents. They were recruited
through social media, online advertisements, talks, and word of
mouth. Consent was obtained from both participants and their
legal guardians. Participants had no known health conditions or
sleep disorders, were not habitual short sleepers (self-reported
total sleep time [TST] < 5 hours on weekdays concurrent with ≤
1 hour of weekend sleep extension), and did not travel across
more than two time zones in the month prior to the study.

Study Protocol
Participants underwent a 14-night evaluation (Figure S1 in the
supplemental material) in a boarding school under quasi-
laboratory conditions. The study protocol was approved by
the Institutional Review Board of the National University of
Singapore and in accordance with the principles of the Dec-
laration of Helsinki. The sleep schedule was designed to sim-
ulate one-and-a-half cycles of shortened sleep onweekdays and
extended sleep on weekends in adolescents. Students who were
randomized into the continuous (n = 29) and the split (n = 29)
sleep groups did not significantly differ in demographic or
habitual sleep characteristics (Table S1 in the supplemental
material). During the 2 baseline sleep and 4 recovery nights, all
participants had a 9-hour (11:00 PM to 8:00 AM) sleep oppor-
tunity. On 8 manipulation nights, participants in the continuous
sleep group had a 6.5-hour (12:15 AM to 6:45 AM) nocturnal
sleep opportunity, whereas those in the split sleep group had a
5-hour (1:00 AM to 6:00 AM) nocturnal sleep opportunity plus a
1.5-hour (2:00 PM to 3:30 PM) afternoon nap following the night
of restricted sleep. Actigraphy and Fitbit data were recorded

throughout the protocol. PSG data were available for 9 nights:
2 baseline nights, 5 sleep restriction nights, and 2 recovery
nights (Figure S1, asterisks). All devices were synchronized
to a common Internet time server to ensure proper alignment
of time-stamped data. Because the first baseline night was an
adaptation night, data were not analyzed.

Polysomnography
Electroencephalography (EEG) was performed using a SOM-
NOtouch recorder (SOMNOmedics GmbH, Randersacker,
Germany) on two channels (C3 and C4 in the international
10-20 system). Contralateral mastoids were used as references.
Electrodes placed at Cz and Fpzwere used as common reference
and ground electrodes respectively. Electrooculography (EOG)
and submental electromyography (EMG) were also used. Im-
pedance was kept below 5 kV for EEG and 10 kV for EOG and
EMG electrodes. Signals were sampled at 256 Hz and filtered
between 0.2 and 35 Hz for EEG, and between 0.2 and 10 Hz
for EOG.

Sleep periods were set according to the times of lights on and
off. Sleep stageswere automatically scored in 30-second epochs
usingan in-housealgorithm20 (https://z3score.com) in conjunction
with the FASST toolbox (http://www.montefiore.ulg.ac.be/
~phillips/FASST.html), and visually reviewed by trained
technicians following criteria set by The AASMManual for the
Scoring of Sleep and Associated Events: Rules, Terminology
andTechnical Specifications to ensure accuracyof the staging.21

TST was computed by totaling epochs of stage N1, N2, N3,
and rapid eyemovement (REM) sleep, whereaswake after sleep
onset (WASO)was defined by the sumof epochs scored aswake
after thefirst stageN1orN2 sleep epoch (because Fitbit does not
distinguish between these two sleep stages). For sleep staging
comparisons with Fitbit, PSG epochs classified as stage N1 and
N2 sleep were categorized as “light sleep” and stage N3 sleep
PSG epochs as “deep sleep.”

Actigraphy
Participants wore an Actiwatch 2 (AW2) on their nondominant
hand. Data were collected in 30-second epochs, with sleep
periods manually defined by lights on and off times, matching
those of PSG. Data were processed using Actiware (version
6.0.7, PhilipsRespironics Inc., Pittsburgh, Pennsylvania), using
twowake threshold and immobility settings. The default setting
utilizes a mediumwake threshold (40 counts per epoch) with 10
immobileminutes (M10) for sleep onset and end. In addition, an
optimized setting employing a high wake threshold (80 counts
per epoch) and 5 immobile minutes (H5) was also included
as a comparison based on prior findings suggesting increased
movement during sleep in adolescents.18,22 TST was computed
by summing all sleep epochs within the sleep periods, whereas
WASO was defined by summing all wake epochs after the first
sleep epoch.

Consumer Wearable Device
During the protocol, each participant wore a Fitbit Alta HR,
hereafter simply referred to as Fitbit, on their nondominant
hand. This device tracks motion and HRV via accelerometers
and optical plethysmography respectively in 30-second epochs.
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A proprietary classification algorithm utilizing accelerometry
and HRV signals23 classifies epochs into wake, or one of three
sleep stages: light, deep, or REM sleep. Data were then wire-
lessly transferred to a smartphone application, and batch extracted
using a third-party data management platform (Fitabase, San
Diego, California).

Given that Fitbit sleep periods are automatically defined,
measures were taken to ensure that time in bed (TIB) was
identical across all the three instruments. Specifically, if Fitbit
sleep onset or offset timings occurred between scheduled lights
off and lights on timings, wake epochs were inserted to the
beginning and/or the end of the record. Conversely, if sleep
onset or offset timings occurred outside of scheduled timings,
wake periods at the beginning and/or the end of the record were
truncated. TST was computed by summing the duration of all
Light, Deep andREMepochswithin each sleep period, whereas
WASO was defined by summing all wake epochs after the first
epoch of sleep.

Data Analysis
SPSS 24.0 (IBM Corp., Armonk, New York) was used for all
statistical analyses. First, to investigatewhether the discrepancy
from PSG in TST and WASO estimates differed across nights
within each TIB condition (5 hours, 6.5 hours, and 9 hours), a
general linear mixed model was performed with device setting
(M10, H5, and Fitbit) and measurement night as factors. No
significant interaction effects between device setting and night
were found (P ≥ .10), indicating that biases were similar in
magnitude across all measurement nights. Subsequent analyses
were thus performed on intrasubject averaged TST andWASO.

Next, one-sample t tests against zero were used to determine
if estimations of TST and WASO by devices were significantly
biased, that is, overestimated or underestimated, from PSG. In
addition, for each TIB condition, a repeated-measures analysis
of variance (ANOVA) was conducted for TST and WASO
separately to compare differences in biases between different
device settings and were followed by post hoc t tests to discern
significant pairwise differences. Furthermore, for each TIB
condition, Bland-Altman24 plots for TST were generated by
plotting the bias of each device setting from PSG against the
TST averaged across the device setting andPSG. Similar Bland-
Altman plots were created for WASO per TIB condition. To
determine if bias magnitudes were proportional to the TST or
WASO measure averaged across the device setting and PSG,
simple linear regressionwas performed. In a secondary analysis,
we also investigated the effects of sex on TST estimates for each
TIB condition (supplemental material). As differential effects
only occurred in the 5-hour TIB condition and in actigraphy,
we did not perform further sex-related analyses.

Finally, to quantify the agreement in sleep-wake categori-
zation between actigraphy/Fitbit and PSG, epoch-by-epoch
(EBE) analyses were conducted for deriving three agreement
measures: accuracy (ability to correctly classify epochs), sen-
sitivity (ability to detect sleep), and specificity (ability to detect
wake) for each device setting. Repeated-measures ANOVAs
for each EBE agreement measure were similarly conducted
within each TIB condition to compare differences in agreement
performance between different device settings and were also

followedupwithpost hoc t tests.Also, to quantify the agreement
in sleep staging between Fitbit and PSG, for each sleep stage
(light sleep, deep sleep, and REM), an EBE analysis was
conducted, and a Bland-Altman plot was generated to show the
duration discrepancies between instruments against the average
duration assessed with Fitbit and PSG.

RESULTS

Fifty-seven patients contributed to the final sample, as one
participant in the continuous sleep group dropped out. In ad-
dition, data loss from technical issues from Fitbit (58 records),
Actiwatch 2 (2 records,) and PSG (12 records), and the ex-
clusion of 11 outlier recordings (> 3 SDs) resulted in the final
sample consisting 386 nights of data common to all devices,
with each participant contributing between 3 to 7 nights of data.

PSG determined sleep architecture for the final sample is
provided in Table 1. Results of one-sample t tests used to
determine the significance of device setting-PSG biases are
summarized in Table 2. Bland-Altman plots representing de-
vice setting-PSGbiases for sleep-wake and sleep-stage analyses
are presented in Figure 1 and Figure 2, respectively. Results of
simple linear regression used to investigate proportional biases
are summarized in Table 3. Accuracy, sensitivity and speci-
ficity values for sleep-wake and sleep-stage classification are
presented in Table 4 and Table 5 whereas EBE classification
metrics are provided in Table 6.

Actiwatch 2 M10 Versus PSG
M10 significantly underestimated TST and overestimated
WASO in all TIB conditions. M10 underestimated TST by an
average of 24 to 38minutes (t ≥ 8.19,P< .001;Table 2).WASO
duration was overestimated by an average of 22 to 38 minutes
(t ≥ 10.14, P < .001). EBE comparisons indicated comparable
agreement across all TIBs. Sleep-wake discrimination accuracy
was excellent (0.89 to 0.90; Table 6), with sensitivities ranging
from 0.90 to 0.91, and good specificities from 0.80 to 0.86.

Actiwatch 2 H5 Versus PSG
H5 showed better agreement with PSG but still underestimated
TST and overestimated WASO in all TIB conditions. TST
was underestimated by an average of 7 to 12 minutes (t ≥ 3.49,
P ≤ .002; Table 2) while WASO was overestimated by an
average of 11 to 18 minutes (t ≥ 8.19, P < .001). Sleep-wake
accuracies ranged from 0.93 to 0.94 (Table 6). Sensitivity was
0.95 across all TIBs, whereas specificities were acceptable,
ranging from 0.64 to 0.73.

Fitbit Versus PSG
Fitbit significantly underestimated TST and overestimated
WASO across all TIB conditions. TST was underestimated by
an average of 24 to 47 minutes (t ≥ 15.62, P < .001: Table 2)
whereas WASO was overestimated by an average of 21 to 41
minutes (t ≥ 15.14, P < .001). EBE comparisons indicated
excellent accuracy and sensitivity of around 0.90 across all TIB
conditions (Table 6). Specificity was between 0.88 and 0.90.
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Concerning sleep-stage classification, biases were depen-
dent on sleep stage and TIB condition examined. Fitbit over-
estimated stageN1+N2 sleep (light sleep) by an average (SD) of
9.9 (19.7) minutes (t = 2.70, P = .012) in the 5-hour TIB
condition; did not differ significantly from PSG in the 6.5-hour
TIB condition, (t = 0.62, P = .54); and underestimated stage
N1 + N2 sleep by an average (SD) of 20.7 (35.8) minutes
(t = 4.36, P < .001) in the 9-hour TIB condition. The de-
vice consistently underestimated stage N3 sleep (deep sleep)

duration in all TIB conditions, by an average of 21.5 to 46.4
minutes (t ≥ 8.19, P < .001). No significant differences were
observed for REM sleep (t ≤ 1.54, P ≥ .13) in all TIB conditions.

EBE comparisons of Fitbit’s sleep staging algorithm indi-
cated average accuracy of 0.68 to 0.71 for stage N1 + N2 sleep
(light sleep), 0.50 to 0.64 for stage N3 sleep (deep sleep), and
0.72 to 0.74 for REM sleep. Confusion matrices (Table 5) in-
dicate that, on average, misclassifications of PSG stageN1 +N2
sleep occurred mostly either as REM sleep (0.10 to 0.13) or

Table 1—Polysomnography-determined sleep architecture.

5-hour TIB (n = 29) 6.5-hour TIB (n = 28) 9-hour TIB (n = 57)

TIB 300.80 (0.52) 390.52 (0.08) 540.52 (0.13)

TST 276.09 (10.18) 368.61 (7.41) 497.77 (21.09)

Stage N1 sleep 6.57 (2.55) 7.02 (3.29) 11.44 (5.38)

Stage N2 sleep 128.88 (14.67) 173.52 (25.17) 260.93 (29.34)

Stage N1 + N2 sleep 135.45 (13.53) 180.54 (24.9) 272.37 (28.79)

Stage N3 sleep 89.18 (12.82) 114.52 (24.84) 109.89 (27.27)

REM sleep 51.47 (13.66) 73.56 (14.02) 115.52 (20.88)

WASO 5.90 (4.29) 7.07 (4.05) 16.23 (12.55)

Sleep efficiency (%) 91.79 (3.44) 94.39 (1.89) 92.09 (3.90)

Data presented as mean (standard deviation) in minutes unless otherwise indicated. Participants in both 5-hour or 6.5-hour TIB groups all had 9-hour
TIB nocturnal sleep opportunities on some days of the protocol. REM = rapid eye movement, TIB = time in bed, TST = total sleep time, WASO = wake after
sleep onset.

Table 2—Biases of each device setting from polysomnography, grouped by TIB condition.

M10 H5 Fitbit F

5-hour TIB

TST −23.74 (15.61) a −7.03 (10.83) a,c −24.05 (8.29) c 86.11

Stage N1 + N2 sleep – – 9.88 (19.74) –

Stage N3 sleep – – −37.77 (19.85) –

REM sleep – – 3.84 (16.80) –

WASO 21.69 (11.51) a 10.92 (7.18) a,c 21.03 (7.48) c 54.61

6.5-hour TIB

TST −32.02 (13.51) a,b −12.43 (9.73) a,c −37.05 (10.94) b,c 88.98

Stage N1 + N2 sleep – – 3.30 (28.22) –

Stage N3 sleep – – −46.38 (26.75) –

REM sleep – – 6.03 (20.69) –

WASO 28.93 (10.89) a 13.99 (6.62) a,c 29.44 (6.50) c 73.24

9-hour TIB

TST −38.30 (21.09) a,b −11.73 (17.75) a,c −47.04 (16.28) b,c 153.87

Stage N1 + N2 sleep – – −20.65 (35.77) –

Stage N3 sleep – – −21.47 (34.03) –

REM sleep – – −4.92 (26.42) –

WASO 37.87 (19.41) a 18.10 (12.67) a,c 41.87 (14.04) c 109.08

Data presented asmean (standard deviation) in minutes. Significant biases are indicated in bold (P <.05). Analyses of variance of TSTandWASO biases within
each TIB were all significant (P <.001) even after corrections for sphericity violations. Negative values indicate underestimations. a M10 significantly different
from H5 (P <.05) within each corresponding TIB. b M10 significantly different from Fitbit (P <.05) within each corresponding TIB. c H5 significantly different from
Fitbit (P <.05) within each corresponding TIB. H5 =Actiwatch 2 high wake threshold with 5 immobileminutes for sleep onset and end,M10 =Actiwatch 2medium
wake threshold with 10 immobile minutes for sleep onset and end, REM = rapid eye movement, TIB = time in bed, TST = total sleep time, WASO = wake after
sleep onset.
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wake (0.11 to 0.13); misclassifications of PSG stage N3 sleep
occurred mostly as light sleep (0.31 to 0.43), and misclassifications
of PSG REM sleep occurred mostly as light sleep (0.15 to 0.16).

Comparison Among Actiwatch 2 M10, Actiwatch 2 H5,
and Fitbit
Magnitudes of device setting-PSG biases for TST and
WASO (Table 2), and EBE agreement metrics (Table 6), be-
tween M10, H5, and Fitbit were compared. All ANOVAs were
significant (TST:F≥86.11,P< .001;WASO:F≥54.61,P< .001;
accuracy: F ≥ 33.03, P < .001; sensitivity: F ≥ 79.84, P < .001;
specificity:F≥33.80,P< .001) for all TIB conditions examined.

Post hoc pairwise comparisons indicated that H5 had on
average significantly less TST underestimation thanM10 by 17
to 27minutes (t≥13.14,P< .001), and Fitbit by 17 to 35minutes
(t ≥ 13.14, P < .001) across all TIBs. Additionally, H5 had on
average significantly less WASO overestimation than M10

by 11 to 20 minutes (t ≥ 9.59, P < .001), and Fitbit by 10 to
24 minutes (t ≥ 10.07, P < .001).

EBE analyses indicated that H5 had on average small but
significantly higher sleep-wake classification accuracies thanM10
by 0.03 (t ≥ 7.02, P < .001), and Fitbits by 0.02 to 0.04 (t ≥ 6.35,
P < .001) across all TIBs. H5 also had on average small but
significantly higher sensitivity values than M10 by 0.04 to
0.05 (t ≥ 10.71, P < .001), and Fitbit by 0.04 to 0.05 (t ≥ 12.06,
P < .001) across all TIBs. However, this came at a cost of lower
specificity values: H5 was lower than both M10 by 0.13 to 0.15
(t ≥ 7.30,P< .001), and Fitbit by 0.16 to 0.24 (t ≥ 6.30,P< .001).

M10 and Fitbit underestimated TST in the 5-hour TIB
condition comparably (t = 0.17, P = .87). This underestimation
of TST was larger in the 6.5-hour (mean [SD] = 5.0 [12.6]
minutes, t = 2.11,P = .044) and 9-hour recordings (mean [SD] =
8.7 [19.4] minutes, t = 3.40,P = .001). However,M10 and Fitbit
had similar overestimations ofWASO across all TIB conditions
(t ≤ 1.91, P ≥ .06).

Figure 1—Bland-Altman plots for total sleep time and wake after sleep onset.

Bland-Altman plots, in minutes, of (A) total sleep time and (B) wake after sleep onset. Red, green, and blue points represent data collected from the 5-hour,
6.5-hour, and 9-hour time in bed conditions respectively. Solid lines and bolded numbers represent the mean biases of each recording, whereas dashed lines
and regular numbers represent 1.96 standard deviation limits of agreement. H5 = Actiwatch 2 high wake threshold with 5 immobile minutes for sleep onset and
end, M10 = Actiwatch 2 medium wake threshold with 10 immobile minutes for sleep onset and end, PSG = polysomnography.
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Sleep-wake accuracies did not significantly differ in the 6.5-hour
and 9-hour TIBs (t ≤ 1.18, P ≥ .25) across all device settings.
Fitbit was only slightly more accurate than M10 in the 5-hour
TIB condition (mean [SD] = 0.01 [0.02]; t = 2.45, P = .019).
Sensitivity values of M10 and Fitbit were comparable across
all TIBs (t ≤ 1.73, P ≥ .09). Finally, although specificity was
higher in Fitbit compared toM10 in both 5-hour, mean (SD) = 0.08
(0.17); t = 2.65, P = .013, and 9-hour TIB conditions, mean
(SD) = 0.07 (0.12); t = 4.56, P < .001, both had comparable
performance in the 6.5-hour TIB condition (t = 1.99, P = .06).

Proportional Biases
Across all TIBs, M10 demonstrated significant increases in
TST and WASO estimation biases with increasing sleep du-
rations (Table 3). The amount of underestimation increased by
0.40 to 0.94 minute per minute of TST, whereas the amount of
overestimation increased by 0.75 to 1.31 minutes per minute of
WASO (F ≥ 10.72, P ≤ .003). H5 and Fitbit demonstrated a
similar relationship for TST only in the 6.5-hour TIB condition
(H5: B = 0.65 minutes, F = 17.18, P < .001; Fitbit: B = 0.69
minutes, F = 12.01, P = .002); no other TIB condition

demonstrated significant relationships (F ≤ 3.98, P ≥ .06).
However, H5 and Fitbit demonstrated increasing estimation
biases for WASO across all TIBs, with H5 biases increasing by
0.32 to 0.80 minutes (F ≥ 6.76, P ≤ .012) and Fitbit biases
increasing by 0.31 to 0.86 minutes (F ≥ 4.46, P ≤ .039) per
minute of WASO. There was generally no significant re-
lationship between the amount of bias by Fitbit and sleep stage
duration across all TIBs (F ≤ 1.56, P ≥ .223). The exception
to this was a decrease in the magnitude of stage N3 sleep
(deep sleep) bias by 1.03 minutes in the 6.5-hour TIB condi-
tion (F = 12.33, P = .002) and by 0.84 minutes in the 9-hour
TIB condition (F = 9.81, P = .003) per minute of stage N3 sleep
(deep sleep).

DISCUSSION

We assessed how well a contemporary consumer-grade
wearable device assessed sleep compared to a research-
grade actigraph and PSG. At default settings, both Fitbit
Alta HR and AW2 performed comparably. Both devices
systematically underestimated sleep in adolescents by an

Figure 2—Bland-Altman plots for sleep stages.

Bland-Altman plots, in minutes, of (A) stage N1 + N2 sleep (light sleep), (B) stage N3 sleep (deep sleep), and (C) REM sleep. Red, green, and blue points
represent data collected from the 5-hour, 6.5-hour, and 9-hour time in bed conditions, respectively. Solid lines and bold numbers represent the mean biases
of each recording, whereas dashed lines and regular numbers represent 1.96 standard deviation limits of agreement. H5 = Actiwatch 2 high wake threshold
with 5 immobile minutes for sleep onset and end, M10 = Actiwatch 2 medium wake threshold with 10 immobile minutes for sleep onset and end,
PSG = polysomnography, REM = rapid eye movement.

Table 3—Proportional biases associated with sleep duration observed in each device setting and grouped by TIB condition.

5-hour TIB 6.5-hour TIB 9-hour TIB

M10 H5 Fitbit M10 H5 Fitbit M10 H5 Fitbit

TST 0.70 (0.21) 0.36 (0.18) 0.22 (0.15) 0.94 (0.12) 0.65 (0.16) 0.69 (0.20) 0.40 (0.11) 0.15 (0.11) −0.02 (0.11)

Stage N1 + N2 sleep – – 0.37 (0.32) – – −0.39 (0.31) – – −0.08 (0.22)

Stage N3 sleep – – −0.35 (0.54) – – −1.03 (0.29) – – −0.84 (0.27)

REM sleep – – −0.26 (0.33) – – 0.28 (0.36) – – −0.12 (0.23)

WASO 1.31 (0.20) 0.74 (0.27) 0.86 (0.19) 1.23 (0.14) 0.80 (0.19) 0.78 (0.20) 0.75 (0.13) 0.32 (0.12) 0.31 (0.15)

Data presented as B (standard error), in minutes. Bold fonts indicate significant (P < .05) associations. Biases were linearly regressed onto the mean of
polysomnography and device setting duration. H5 = Actiwatch 2 high wake threshold with 5 immobile minutes for sleep onset and end, M10 = Actiwatch 2
mediumwake threshold with 10 immobile minutes for sleep onset and end, REM= rapid eyemovement, TIB = time in bed, TST = total sleep time,WASO =wake
after sleep onset.
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average of approximately 30 minutes. This underestimation
increased when sleep opportunity was lengthened, likely as
a result of reduced sleep efficiency (greater wake within a
given sleep opportunity) and a tendency of these devices
to overestimate wakefulness. Reducing motion sensitivity
during sleep in the AW2 device yielded TST and WASO
measurements closer to those obtained with PSG, but at
the expense of slightly worsened detection of wakefulness.
Fitbit estimation of sleep stages was good for stage N1 and
N2 sleep, as well as REM sleep, but stage N3 sleep was
systematically underestimated.

Consumer-Grade Actigraphy Has Caught Up With
Research-Grade Devices
A key finding of the current work is that at default settings, and
for the assessment of adolescent sleep, the Fitbit Alta HR
performed comparably with the research grade AW2, costing
about three times more. Additionally, Fitbit readouts showed
less deviation in TST measurement relative to PSG than

Actiwatch 2 at default (medium sensitivity) settings. Fitbit
demonstrated the best wake specificities of all device settings
considered across the different TIB conditions and this likely
reflects the benefit of incorporating heart rate sensing to the
classification of sleep and wake. Current findings document a
clear advance of consumer wearable devices for the purpose of
measuring sleep relative to prior comparisons between con-
sumer and research devices. An additional advantage of Fitbit
devices is that sleep data can be wirelessly synchronized by
participants to a data cloud, allowing monitoring of data as it is
collected. This saves time from having to physically download
data using a proprietary dock one unit at a time as when using
conventional research devices.

Actigraphy Underestimates Sleep of
Healthy Adolescents
Currently, there are conflicting data about the accuracy of
actigraphy for assessing adolescent sleep. In two studies
actigraphy underestimated sleep in adolescents18,19 whereas

Table 5—Confusion matrices of Fitbit sleep staging by TIB group.

Fitbit

Light Sleep Deep Sleep REM Sleep Wake

PSG

Stage N1 + N2 Sleep

5-hour TIB 0.71 (0.06) 0.06 (0.04) 0.11 (0.07) 0.12 (0.04)

6.5-hour TIB 0.68 (0.08) 0.06 (0.04) 0.13 (0.06) 0.13 (0.04)

9-hour TIB 0.71 (0.06) 0.08 (0.04) 0.10 (0.05) 0.11 (0.03)

Stage N3 Sleep

5-hour TIB 0.43 (0.13) 0.50 (0.14) 0.02 (0.03) 0.05 (0.03)

6.5-hour TIB 0.40 (0.12) 0.51 (0.12) 0.02 (0.03) 0.06 (0.04)

9-hour TIB 0.31 (0.14) 0.64 (0.14) 0.01 (0.02) 0.04 (0.02)

REM Sleep

5-hour TIB 0.15 (0.11) 0.00 (0.01) 0.74 (0.15) 0.11 (0.06)

6.5-hour TIB 0.16 (0.11) 0.01 (0.03) 0.73 (0.15) 0.11 (0.07)

9-hour TIB 0.16 (0.10) 0.00 (0.01) 0.72 (0.14) 0.12 (0.07)

Wake

5-hour TIB 0.09 (0.07) 0.02 (0.06) 0.02 (0.02) 0.88 (0.10)

6.5-hour TIB 0.07 (0.05) 0.01 (0.04) 0.03 (0.03) 0.90 (0.09)

9-hour TIB 0.08 (0.06) 0.01 (0.03) 0.03 (0.03) 0.88 (0.09)

Mean (standard deviation) of proportions, referenced to PSG, of each sleep stage classification are displayed. Bold values indicate classification accuracies for
each sleep stage category. H5 = Actiwatch 2 high wake threshold with 5 immobile minutes for sleep onset and end, M10 = Actiwatch 2 medium wake threshold
with 10 immobile minutes for sleep onset and end, PSG = polysomnography, REM = rapid eye movement, TIB = time in bed.

Table 4—Confusion matrices of each device setting by TIB group.

M10 H5 Fitbit

Sleep Wake Sleep Wake Sleep Wake

PSG

Sleep

5-hour TIB 0.90 (0.04) 0.10 (0.04) 0.95 (0.02) 0.05 (0.02) 0.90 (0.03) 0.10 (0.03)

6.5-hour TIB 0.91 (0.04) 0.10 (0.04) 0.95 (0.02) 0.05 (0.02) 0.90 (0.03) 0.10 (0.03)

9-hour TIB 0.91 (0.04) 0.09 (0.04) 0.95 (0.02) 0.05 (0.02) 0.90 (0.03) 0.10 (0.03)

Wake

5-hour TIB 0.20 (0.21) 0.80 (0.21) 0.36 (0.24) 0.64 (0.24) 0.12 (0.10) 0.88 (0.10)

6.5-hour TIB 0.14 (0.10) 0.86 (0.10) 0.27 (0.16) 0.73 (0.16) 0.10 (0.09) 0.90 (0.09)

9-hour TIB 0.19 (0.16) 0.81 (0.16) 0.33 (0.20) 0.67 (0.20) 0.12 (0.09) 0.88 (0.09)

Mean (standard deviation) of proportions, referenced to PSG, of sleep/wake agreements are displayed. Bold values indicate specificities for sleep/wake
categories; the classification accuracy of epochs into sleep or wake. H5 = Actiwatch 2 high wake threshold with 5 immobile minutes for sleep onset and end,
M10 = Actiwatch 2 medium wake threshold with 10 immobile minutes for sleep onset and end, PSG = polysomnography, TIB = time in bed.
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another found either correct estimation or overestimation of
sleep by actigraphy in older adolescents, depending on device
sensitivity settings.16 Conversely, at least two sleep diary +
actigraphy studies have shown significant underestimation of
adolescent sleep with actigraphy,22,25 but neither had PSG
confirmation of sleep duration.

The current work shows actigraphy to clearly underestimate
sleep and to overestimate WASO in healthy older adolescents
studied over multiple nights with PSG and over different sleep
opportunity durations.A likely reason for sleepunderestimation
relates to greater movement compared to adults during healthy
adolescent sleep.18,22 Inclusion of data from a clinical population
may have masked such increased movement during sleep in an
earlier study, as patients tend to move less.16

Estimation biases increased with TIB duration. Underesti-
mation of TSTwasmore pronounced at 9-hour TIB compared to
5-hour TIB. Conversely,WASOwas overestimatedwith longer
TIB. In our sample, sex effects were not sufficiently significant
across different sleep schedules to merit correction. This
information regarding estimation biases as a function of

adolescence and TIB provides for finer grained customization
of sleep evaluation using actigraphy and could make for better
estimates of TST and WASO in future consumer wearable
devices. The value of “tuning” sleep detection to the patient is
illustrated in the comparison between M10 and H5 (lower
sensitivity to motion) settings in Actiwatch devices, the latter
giving rise to superior accuracy of sleep detection with some
tradeoff in the form of reduced sensitivity to wakefulness
detection.

Fitbit Sleep Staging
REM sleep estimation by Fitbit was accurate on average across
all TIB conditions considered. However, stage N3 sleep (deep
sleep) was consistently underestimated. Our findings replicate
those of de Zambotti and colleagues.11 Stage N3 sleep under-
estimation was more pronounced in shorter TIB conditions as
compared to the longer 9-hour TIB condition. The estimation
of stage N1 + N2 sleep (light sleep) was also affected by sleep
duration, where it was overestimated in the 5-hour TIB con-
dition, and underestimated it in the 9-hour TIB condition.

Table 6—EBE agreement metrics, referenced to PSG, of each device setting grouped by TIB condition.

M10 H5 Fitbit F

5-hour TIB

Sleep-wake accuracy 0.89 (0.04) a,b 0.93 (0.02) a,c 0.90 (0.03) b,c 33.03

Wake specificity 0.80 (0.21) a,b 0.64 (0.24) a,c 0.88 (0.10) b,c 33.85

Sleep sensitivity 0.90 (0.04) a 0.95 (0.02) a,c 0.90 (0.03) c 84.44

Sleep stage accuracies

Light sleep – – 0.71 (0.06) –

Deep sleep – – 0.50 (0.14) –

REM sleep – – 0.74 (0.15) –

6.5-hour TIB

Sleep-wake accuracy 0.90 (0.03) a 0.94 (0.02) a,c 0.90 (0.03) c 46.72

Wake specificity 0.86 (0.10) a 0.73 (0.16) a,c 0.90 (0.09) c 33.80

Sleep sensitivity 0.91 (0.04) a 0.95 (0.02) a,c 0.90 (0.03) c 79.84

Sleep stage accuracies

Light sleep – – 0.68 (0.08) –

Deep sleep – – 0.51 (0.12) –

REM sleep – – 0.73 (0.15) –

9-hour TIB

Sleep-wake accuracy 0.90 (0.03) a 0.93 (0.02) a,c 0.90 (0.02) c 45.49

Wake specificity 0.81 (0.16) a,b 0.67 (0.20) a 0.88 (0.08) b,c 80.49

Sleep sensitivity 0.91 (0.04) a 0.95 (0.02) a,c 0.90 (0.03) c 119.47

Sleep stage accuracies

Light sleep – – 0.71 (0.06) –

Deep sleep – – 0.64 (0.14) –

REM sleep – – 0.72 (0.14) –

ANOVAs of sleep sensitivities, wake specificities and sleep-wake accuracies within each TIB were all significant (P < .001), even after corrections for
sphericity violations. aM10 significantly different from H5 (P < .05) within each corresponding TIB. bM10 significantly different from Fitbit (P < .05) within each
corresponding TIB. cH5 significantly different from Fitbit (P <.05) within each corresponding TIB. EBE = epoch by epoch, H5 = Actiwatch 2 high wake threshold
with 5 immobile minutes for sleep onset and end, M10 = Actiwatch 2 medium wake threshold with 10 immobile minutes for sleep onset and end, PSG =
polysomnography, REM = rapid eye movement, TIB = time in bed.
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EBE comparisons of Fitbit-PSG help shed some light onto its
overall sleep staging performance. Stage N1 + N2 and REM
sleep demonstrated accuracies of approximately 70% across all
TIB conditions. Stage N3 sleep classification accuracies were
much poorer, especially at shorter recording durations of 5-hour
and 6.5-hour TIBs. Contributing to these errors, stage N3 sleep
epochs, similar to REM sleep epochs, were most commonly
misclassified as light sleep. As sleep restriction has been shown
to cause an increase in sympathetic activity evidenced by al-
terations to HRV,26 this could have affected accurate staging.

Strengths and Limitations
A key strength of the current study is the evaluation of more
than 50 healthy adolescents over multiple nights in carefully
controlled settings and with concurrent PSG. The consumer
wearable device tested belongs to a new generation of devices
where other physiological sensors other than motion (eg, heart
rate, skin temperature, conductance) are used to differentiate
sleep and wake. A fuller evaluation of newer consumer-grade
wearable devices would need to test other devices, and include
young adults as well as older persons in the study sample to
confirm our suggestion regarding the utility of age and sleep
duration customization of sleep measurement to improve ac-
curacy. We are also unable to comment on how this particular
wearable device would perform in persons with medical con-
ditions. In addition, because of the limited number of EEG
channels afforded by the PSG setup, only C3 andC4 derivations
were recorded. This could have affected the scoring of (1) N1
sleep onset based on occipital alpha rhythm attenuation, as well
as (2) the amount of N3 recorded as signals from the central
electrodes are typically less prominent than those recorded from
the frontal electrodes.

Notably, although many previous reports were motivated by
investigators seeking to use actigraphy in clinical settings, the
rapid growth in adoption of consumer wearable devices is
driven by aspirations to improve personal health and wellbeing
in mostly healthy persons. The favorable price-to-performance
ratio of these new devices makes them very attractive for large-
scale longitudinal bio-bank type studies where sleep is
being increasingly recognized as a health variable that should
be tracked and analyzed when creating models of healthy
life styles.

CONCLUSIONS

In healthy adolescents, a new generation of consumer-grade
wearable activity/sleep trackers exemplified by the Fitbit Alta
HR generates sleep/wake data that are comparable to default
settings used in a well-known research actigraph costing about
three times more. Age and sleep opportunity should be con-
sidered as variables for tuning the performance of suchwearable
devices for sleep/wake estimation in the future. Wearable de-
vice sleep staging, although somewhat adequate for detecting
stage N1 + N2 and REM sleep, significantly underestimates
stage N3 sleep and consumers should be made aware of this
point to allay anxiety when comparing their sleep stages to PSG
based norms.

ABBREVIATIONS

AW2, Actiwatch 2
EBE, epoch-by-epoch
EEG, electroencephalography
EMG, electromyography
EOG, electrooculography
H5, Actiwatch high wake threshold with 5 immobile minutes

for sleep onset and end
HRV, heart rate variability
M10, Actiwatch medium wake threshold with 10 immobile

minutes for sleep onset and end
PSG, polysomnography
REM, rapid eye movement
TIB, time in bed
TST, total sleep time
WASO, wake after sleep onset
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